
Performance Evaluation of an IPv6-capable H323 Application1

C. Bouras, A. Gkamas, D. Primpas, K. Stamos
Research Academic Computer Technology Institute

Riga Feraiou 61, GR-26221 Patras, Greece
and

Computer Engineering and Informatics Department
University of Patras

GR-26500 Patras, Greece
Tel:+30-2610-{960375, 960465, 996954, 960316 }
Fax:+30-2610-{996314, 960358, 960358, 960358}
e-mail: {bouras, gkamas, primpas, stamos}@cti.gr

Abstract

OpenH323 is an open source H.323 implementation that

has been ported to IPv6. In this paper we briefly introduce
the library architecture and the performance citeria with
which the ported version should be evaluated. We then
present a variety of experiments that we conducted in order
to comparatively evaluate the IPv4 and IPv6 protocol
stacks. We also present the results of some initial
experiments comparing IPv4 and IPv6 performance under
congested network links and the conclusions that they lead
us to.

1. Introduction

The new version of IP, IPv6 [9], constitutes an effort to

overcome the inborn limitations of IPv4, in order for the
new protocol to be able to respond to the new needs as they
shape today in the Internet. More than simply increasing the
address space, IPv6 offers improvements like built-in
security support, plug and play support, no checksum at the
IP header and more flexibility and extensibility than IPv4.
IPv6 also facilitates efficient renumbering of sites by
explicitly supporting multiple addresses on an interface. The
widespread adoption of the new Internet Protocol will fuel
innovation and make possible the creation of many new
networking applications. It will also allow the replacement

 1This work was partially supported by the 6NET project founded by

the IST program of European Commission (IST contract No: 2001-32603)
[5]

of the NAT solutions that have been implemented today in
order to workaround the lack of IPv4 addresses. NAT
introduces a number of problems to network applications
that need knowledge of the IP address of the host machine
or want to take advantage of Quality of Service
mechanisms, like VoIP implementations.

The transition phase from IPv4 to IPv6 has raised many
discussions among the Internet community. Apart from the
network and hardware part of the issue, a very important
aspect is the modification (porting) of existing applications
so that they become IPv6 enabled. Unfortunately, the vast
majority of network applications in existence today, and
especially multimedia applications, presume the use of the
IPv4 protocol, so a transition to IPv6 will have to be
accompanied by the development of new applications
and/or the modification of the existing ones, so that they can
be used in IPv6 environments. For this reason, we decided
to port to IPv6 the library upon which the OpenH323
project is based, a large open-source library [1]. This way,
we are able to use a wide range of real-time applications
over IPv6 and experiment with their performance. It is also
interesting to investigate the behaviour of IPv6 applications
using QoS mechanisms, since they promise to effectively
serve real-time applications in high bandwidth networks.

The problem of porting existing applications to IPv6 has
been so far addressed by several researchers, including
companies and academic institutes. A white paper by
Microsoft [10] focuses on Windows applications, but at the
same time offers some general guidelines that apply to any
application for any operating system. In [13], the authors
emphasize more on some general knowledge that a
programmer must acquire before dealing with the problem
of porting applications to IPv6. There are also books [12]

that can provide useful assistance to a programmer on this
task. Recently, a paper by Robles, Ortiz and Salvachua
presented the authors’ results from porting a SIP
implementation to IPv6 [11].

The rest of the paper is organised as follows: Section 2
gives a short introduction to the OpenH323 open source
implementation of the H.323 standard. In section 3 we
explain what we can expect from the experiments and how
we should evaluate them. Section 4 presents the testbed we
used for running the experiments, and section 5 provides the
details of the results of our experiments and the conclusions
we draw from each one. Finally, section 6 presents our final
conclusions and our planned future work.

2. OpenH323 project

The OpenH323 project [4] develops an open source

implementation of the H.323 standard in the form of a
central library, the OpenH323 library, which is also based
on another open source library called PWLib. The open
source OpenH323 library can be used for the rapid
development of applications that wish to use the H.323
protocol for multimedia communications over packet-based
networks. It is written with C++, and currently contains
nearly 100 classes in over 350.000 lines of source code.
There are classes that represent an H323 connection, various
types of H323 channels, gatekeeper and transport protocols.

Applications
(videoconferencing client, MCU, gatekeeper,

answering machine,...)

PWLib library
(PSocket, PChannel, PProcess, PThread,

PSound, ...)

OpenH323 library
(H323Endpoint, H323Transport,
H323Listener, H323Connection,

H323Channel, ...)

Unix facilities
(sockets, I/O, GUI,

threads)

MS Windows
facilities

(sockets, I/O, GUI,
threads)

Figure 1. Relationship of the OpenH323 and
PWLib libraries

A number of applications have been developed on top of

the OpenH323 library, both within and outside the
OpenH323 project. They include a command line H.323

client, an H.323 videoconferencing server (MCU), H.323
answering machine, H.323 gatekeeper, H.323 to PSTN and
fax modem to T.38 gateways, and GnomeMeeting, a
graphical H.323 client for Linux. Most of these applications
require little additional effort in order to be used over IPv6
since the base libraries have been ported, thereby giving us
the opportunity to test the IPv6 stack in various scenarios.

Figure 1 gives a visual representation of the way the
OpenH323 and PWLib libraries interconnect and the
architecture of the applications developed on top of these
two libraries.

The OpenH323 project and most of the applications it
supports have now been ported to IPv6 [1].

3. Performance & Evaluation Criteria

There are various parameters that have to be examined

when an application has been ported to IPv6, that determine
the quality and the usefulness of the ported application.
These parameters include (but are not limited to) whether
the application simultaneously supports IPv4 and IPv6,
compatibility with all the IPv6-related RFCs, capability to
work with multiple DNS results (because of the IPv4-IPv6
coexistence), use of multicast or anycast addresses, and the
level of support for new IPv6 features like the Flow Label
for QoS schemes. In this work however, we are mainly
concerned with the evaluation of the application regarding
its performance and bandwidth consumption characteristics,
and in particular how they compare between IPv4 and IPv6.
More detailed information on the above issues can be found
at [1], [2].

Mainly due to the larger IP header, IPv6 can be expected
to introduce some overhead compared to IPv4. Comparing
the overhead caused by IPv6 vs. the overhead by IPv4 is a
difficult task, because a lot of factors are involved.
Sometimes overhead can be attributed to a less-than-optimal
implementation of the specific application with regard to
IPv6. Another factor is the TCP/IP stack itself and the way
it has been implemented. The DNS resolver can also play a
small role, usually against IPv6 because of the additional
AAAA record. It is also clear that when considering
tunneling transition mechanisms, they will contribute to
degraded performance for IPv6, since IPv6 packets have to
be encapsulated in IPv4 packets and suffer the additional
overhead.

Perhaps the most important criterion is the final user
perception that the application will give. Although it is
highly subjective and can be influenced from a lot of factors
(many of which are outside of the control of the application
or the IPv6 stack implementation), it is important because it
is connected with the acceptance of the IPv6 protocol. The
main characteristic that determines the user perception when
considering an IPv6 application and its IPv4 counterpart is
usually the achieved throughput by each application
version.

In the experiments we conducted we were especially
careful to transmit exactly the same source in all of the
experiments, so that possible differences in behaviour due to
different media streams could be eliminated.

We are also interested in the system administrator’s
perception, with regard to the ease of managing an IPv6-
enabled application. This parameter is influenced a lot by
the path taken for the porting: the development of a new
application executable, or the simultaneous support of both
IP versions by the same executable. In the first case, the
administrator will probably have to maintain two different
versions for the same application, since IPv4 and IPv6 are
predicted to co-exist for a long time, and keeping and
updating two versions of the same application doubles the
required administrative and maintenance efforts.

Finally, it is interesting to consider whether an
application running on a dual-stack host can communicate
with an earlier IPv4-only version of the application also
running on a dual-stack host. By using the mechanism of
IPv4-mapped IPv6 addresses an IPv-6 enabled application
operating as a server can communicate with an IPv4-only
version operating as client. An IPv6 client can communicate
with an IPv4 server only if it uses its IPv4-mapped IPv6
address. This can be achieved by using the DNS (Domain
Name Service) mechanism and choosing the A record,
which is returned to the client as the server’s IPv4-mapped
IPv6 address. These observations are summarized in Table
1.

Table 1. Interoperability between IPv4 and IPv6
versions running on dual-stack hosts

 IPv4 server IPv6 server
IPv4 client Communicate

using IPv4
Communicate
using IPv4, server
sees IPv4-mapped
IPv6 address

IPv6 client Can communicate

if the IPv6 client
uses an IPv4-
mapped IPv6
address

Communicate
using IPv6

4. Experiments Setup

The tests that follow took place on a real IPv6 testbed

network. This testbed has been created internally in CTI and
is displayed in Figure 2.

Tests were carried out so that communication from one
endpoint to the other had to pass through 2 hops, with the
bottleneck link being the 10 Mbps one.

local CTI network

Cisco 3640

CTI-PATRA
Cisco 7206

CISCO 2610

10Mbs 10Mbs

CISCO 2511B2B serial
2Mbit

ATM 155

Figure 2. Internal testbed for running the tests

In order to create background traffic, we used the Iperf

tool ([6]), which is capable of producing TCP/UDP traffic
in both IPv4 and IPv6. For retrieving and studying the
transmission/reception data we used both the RTP/RTCP
feedback from the OpenH323 library, and the Ethereal and
Sniff’Em network monitoring tools ([7], [8]).

Transmission of video data was made using the
OpenH323 built-in H.261 codec with CIF resolution, which,
although optimized for low data rates and low motion and
therefore producing lower quality results than H.263, was
sufficient for our purposes. Audio transmission was
achieved using G.711 (muLaw variation), a PCM scheme
that operates at the rate of 64Kbps.

The applications used for the tests were the OpenPhone
GUI client, the OpenMCU implementation of a software
MCU, and the OpenWAV application for transmitting pre-
recorded audio files.

The general purpose of our experiments is to evaluate the
IPv6 version of the OpenH323 library, and particularly in
comparison with the IPv4 version. Also, we want to observe
how both versions behave when a link in the transmission
path is congested because of the simultaneous transmission
of other traffic. Finally, we test with the competing traffic
being both UDP and TCP, because of the different
behaviour characteristics of the two transport protocols, and
the different impact that they have on the rest of the
applications that use the same network links.

5. Experiments and Analysis

5.1. Experiment 1: IPv4 and IPv6
communication with no competing traffic

Our first experiment was to test the IPv4 version of the

OpenPhone application at a Point-to-Point communication,
sending video and audio between 2 PCs, and without any

competing traffic at the intermediate link. This experiment
was designed in order to test the basic operation of
OpenH323 protocol stack on a non-congested network using
the IPv4 protocol, and to have a reference point for the rest
of the experiments we subsequently conducted.

As shown at Figure 3, we obtained a steady transmit rate
of 16 KBytes per second throughout the experiment. The
quality of the video transmitted was relatively low, because
of the characteristics of the H.261 codec.

We then repeated the experiment using the IPv6 stack for
the Point-to-Point communication between the two
endpoints. Again, we were sending video and audio
between 2 PCs, and without any competing traffic at the
intermediate link. This experiment was also designed in
order to test the basic operation of OpenH323 protocol stack
on a non-congested network using IPv6.

IPv4 and IPv6 stack, no competing traffic

10
11
12
13
14
15
16
17
18

33
,9

38
,5

43
,3 48

52
,7

57
,4

62
,1

66
,8

71
,5

76
,2 81

85
,7

90
,4

95
,1

seconds

KB
yt

es
/s IPv4 stack

throughput
IPv6 stack
throughput

Figure 3. OpenPhone operation without

competing traffic

Again we can see in Figure 3 that in the absence of any

competing traffic and with a link of much higher capacity
than the H.261 codec could ever want, we obtain a steady
transmission rate of around 17 KBytes per second, around
7% larger than the IPv4 transmission rate. This difference is
due to the fact that the Data-Link layer was carrying 294-
byte packets in the case of IPv4, and 314-byte packets in the
case of IPv6. The standard IPv6 header is 20 bytes larger
than the standard IPv4 header, which produces the 7%
overhead. This is in fact an expected and known result,
since the larger IPv6 header introduces some overhead,
especially in relatively low-rate transmissions.

In both cases we can observe that the choice of network
layer stack is not an issue, since the application will
consume the required bandwidth, given an uncongested
link. We can not however expect that this will always be the
case. A transmission rate of around 140 Kbits per second
means that for low bandwidth links (for example modem or
basic ISDN links) there will be significant congestion. Also
for high bandwidth links that carry a lot of additional traffic,
unwanted results can occur if the H.323 traffic is added to

the competition. In the following experiments we
experimented with the latter case, and we also tried to
identify possible behaviour differences between IPv4 and
IPv6.

5.2. Experiment 2: IPv4 communication with
competing UDP traffic

This time we repeated the initial experiment, but we also

added some background traffic to compete with our
OpenH323 application at the bottleneck link. Since the
bottleneck link was rather big compared to the demands of
our application, we generated competing traffic that was
more than an order of magnitude larger than the H.323
traffic. Although this fact makes it more difficult for us to
obtain detailed results, since we have to take into account
the relative weight of each type of traffic, we believe that
this situation is closer to a typical scenario of a high
bandwidth congested link. Our experiments model a
broadband network, that is however to a large degree
congested because of heavy use of a lot of competing
applications (like peer-to-peer networks or other multimedia
streaming sources). Because OpenH323 uses UDP, we
chose to also generate UDP traffic, since more gentle TCP
traffic would be significantly reduced by the UDP traffic.
UDP is also more typical of the usual applications with high
bandwidth demands.

IPv4 stack, with UDP competing traffic

0
2
4
6
8

10
12
14
16
18

5,
45

59
,8

10
9

14
0

16
2

18
4

20
5

22
7

24
9

29
3

34
9

37
1

39
2

41
3

46
9

51
6

53
8

58
3

seconds

KB
yt

es
/s

Figure 4. OpenPhone operation with IPv4 stack

and UDP competing traffic

As we can see at Figure 4, the competing traffic reduced

the transmission rate of the H.323 traffic, and therefore also
reduced at a large and visible extent the quality of the video
received at the other endpoint.

The reduction at the transmission rate of the H.323 traffic
was not constant. Instead, there were time periods when the
H.323 traffic actually regained most of its initial bandwidth
(close to 16 KBytes per second). This effect probably has to
do with the fact that the H.323 traffic was relatively small
compared to the artificially generated UDP traffic, and

therefore minor variations at the generated traffic (perhaps
because of processor or network stack limitations) reflected
more heavily at the H.323 traffic.

5.3. Experiment 3: IPv6 communication with
competing UDP traffic

When we repeated the above experiment using the IPv6
stack, the results were even more dramatic, because of the
slightly bigger bandwidth consumption of IPv6. The
transmission rate was significantly reduced, and so did the
receiving video quality. The losses reported by RTCP were
also 100% more than without the competing traffic.

We again observed the effect of a periodic effort by the
H.323 traffic to regain more bandwidth, which we suspect is
due to the same reasons as mentioned in the similar
experiment conducted with the IPv4 stack. A concern also
has to be the fact that the Windows 2000 IPv6 stack that
was used for transmission is experimental, and is therefore
probably not as optimized as the Windows 2000 IPv4 stack.

IPv6 stack, with UDP competing traffic

0

5

10

15

20

25

0

4,
88

9,
69

25
,6

53
,5

79
,8

10
6

12
6

14
4

14
9

15
4

16
3

19
0

21
8

24
5

27
9

32
2

35
4

seconds

K
By

te
s/

s

Figure 5. OpenPhone operation with IPv6 stack

and UDP competing traffic

5.4. Experiment 4: IPv6 communication with
competing TCP traffic

Our next experiment repeated the above described

scenario, only that this time we chose the competing traffic
to be carried by the TCP protocol, which is much more
sensitive to congestion than UDP. This experiment models
the scenario of an H.323 application competing with a lot of
processes that occupy a lot more bandwidth than H.323 in
total, but are using the TCP transport protocol, and are
therefore more sensitive to congestion and the resulting
packet losses.

IPv6 stack, with TCP competing traffic

0
2
4
6
8

10
12
14
16

0

9,
14 21

35
,6

51
,8

72
,1 85 11
0

13
0

14
5

15
6

17
1

18
4

19
4

23
0

27
0

29
3

30
5

seconds

KB
yt

es
/s

Figure 6. OpenPhone operation with IPv6 stack

and TCP competing traffic

The behaviour of the application again was in the range

of 5-14 Kbps, although we observed some variations both in
the transmitting rate and the reception quality of the video
image, as shown in Figure 6. These variations are more
intense than in the previous experiments. A reason for this
behaviour can be the fact that the TCP protocol slowly tries
to regain bandwidth that it has lost due to congestion
through an AIMD (Additive Increase, Multiplicative
Decrease) algorithm. When the artificially generated TCP
traffic tried to increase its transmission rate, the resulting
congestion caused more packets to be lost for the H.323
application. In total, RTCP reported a quite high 5,5%
packet loss rate.

Competing TCP traffic

600

650

700

750

800

850

900

0

16
,1

33
,6 50

68
,4

84
,7

10
4

12
1

14
0

16
1

18
0

20
1

22
0

23
8

25
6

27
4

29
1

30
9

32
7

seconds

KB
yt

es
/s

Figure 7. TCP traffic

Figure 7 shows the impact that the H.323 application had

on the competing TCP traffic. The transmission rate of the
TCP traffic suffered almost a 30% decrease, since the
introduction of UDP traffic caused network congestion,
from which TCP is unable to quickly recover.

Throughout the experiment, the TCP artificially
generated traffic had a widely varying transmission rate, as
it constantly tried to increase its bandwidth in a congested
link. It is also worth noting that because of the “pessimistic”

operation of TCP, most of the time the competing traffic
was far below the capacity of the link (after deducting the
bandwidth that was consumed by the H.323 UDP traffic).
This happened because each time TCP tried to increase the
transmission rate, it soon leaded to congestion, and this in
turn had the effect of aggressively (multiplicatively)
decreasing the TCP transmission rate.

6. Conclusion and Future Work

The above results clearly demonstrate the need for some

sort of QoS mechanisms that will be able to compensate for
the loss of quality that we observe when there is a congested
link, especially when the competing traffic is UDP-style.
The IPv4 and IPv6 versions behave roughly the same,
although the slightly larger overhead of IPv6 due to the
larger standard header makes the IPv6 version a bit more
sensitive to congestion. Since a large part of the traffic in
modern and future networks can be safely expected to be
UDP, non-backtracking traffic, applications that are
sensitive to congestion, like real-time applications, will need
some kind of support from the network. This could be
achieved through the use of QoS mechanisms and
predefined service agreements.

At the next stages, we plan to repeat and expand the
above described trials outside the CTI internal network,
with other parties in the Greek IPv6 network and with
parties outside Greece in order to investigate the operation
of OpenH323 platform for WAN communication with many
more hops. We will compare those results with the result
acquired during the trial in our internal network.
Furthermore, we plan to investigate the behaviour and the
outcome of the trials using QoS DiffServ mechanisms like
the gold service, that will benefit the OpenH323 traffic
compared to the rest of the background traffic.

7. References

[1] C. Bouras, A. Gkamas, K. Stamos, “From IPv4 to IPv6: The
case of OpenH323 Library”, SAINT 2003, Orlando, Florida,
27-31 January 2003, pp. 196-199

[2] C. Bouras, A. Gkamas, A. Karaliotas, D. Primpas, K. Stamos,
“Issues for the performance monitoring of an open source
H.323 implementation ported to IPv6-enabled networks with
QoS characteristics” The 2003 International Conference in
Internet Computing (IC 2003), Las Vegas, Nevada, USA,
June 23 - 26 2003, pp. 765 - 771

[3] K. Thomson, G.J. Miller and R. Wilder, “Wide Area Internet
Traffic Patterns and Characteristics” in IEEE/ACM
Transactions on Networking, pp 10-23, 1997

[4] OpenH323 project, http://www.openh323.org

[5] 6NET project, http://www.sixnet.org

[6] http://dast.nlanr.net/Projects/Iperf

[7] http://www.sniff-em.com/

[8] http://www.ethereal.com/

[9] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, Internet Engineering Task Force RFC 2460,
December 1998

[10] Microsoft Corporation, Adding IPv6 capability to Windows
Socket Applications

[11] R. Ortiz, T. Robles and J. Salvachua, Porting the Session
Initiation Protocol to IPv6, IEEE Internet Computing, May –
June 2003, pp. 43-50

[12] W. R. Stevens, Network Programming, Volume 1, 2nd
Edition

[13] Sun Microsystems, Porting Networking Applications to the
IPv6 APIs

http://www.openh323.org/
http://dast.nlanr.net/Projects/Iperf
http://www.sniff-em.com/
http://www.ethereal.com/

	Abstract(
	Introduction
	OpenH323 project
	Performance & Evaluation Criteria
	
	
	
	IPv6 client

	Experiments Setup
	Experiments and Analysis
	Experiment 1: IPv4 and IPv6 communication with no competing traffic
	Experiment 2: IPv4 communication with competing UDP traffic
	Experiment 3: IPv6 communication with competing UDP traffic
	Experiment 4: IPv6 communication with competing TCP traffic

	Conclusion and Future Work
	References

