
Issues for the performance monitoring of an open
source H.323 implementation ported to IPv6-enabled

networks with QoS characteristics

Ch. Bouras A. Gkamas A. Karaliotas D. Primpas K. Stamos

Research Academic Computer Technology Institute
Riga Feraiou 61, GR-26221 Patras, Greece

and
Computer Engineering and Informatics Department

University of Patras
GR-26500 Patras, Greece

Tel:+30-2610-{960375, 960355, 960440, 996182, 960316 }

Fax:+30-2610-{996314, 960358, 960358, 960358, 960358}
e-mail: {bouras, gkamas, karaliot, primpas, stamos}@cti.gr

Abstract

OpenH323 is an open source H.323 implementation
that has been ported to IPv6. It therefore presents an
opportunity to perform experiments and compare the
performance of an H.323 application when using the
IPv4 stack and when using the IPv6 stack. In this
paper we initially introduce briefly the porting
procedure and the methodology we used in order to
achieve it. We then present the appropriate
experiments that have to be performed in order to
comparatively evaluate the IPv4 and IPv6 protocol
stacks. We also present the results of some initial
experiments comparing IPv4 and IPv6 performance
and the conclusions that they can lead us to.

Keywords: IPv6, OpenH323, Real Time
Applications, Videoconferencing, QoS

1. Introduction
The new version of IP, IPv6 ([3]), constitutes
an effort to overcome the inborn limitations of
IPv4, in order for the new protocol to be able to
respond to the new needs as they shape today in
the Internet. In addition to the upgrade to 128
bit addresses, the IPv6 packet format was
redesigned in order to overcome the limitations
of IPv4. More than simply increasing the
address space, IPv6 offers the following

improvements: (1) IPv6 has built in security
support. (2) IPv6 eliminates the checksum from
the IP header. (3) IPv6 is more flexible and
extensible than IPv4. (4) IPv6 facilitates
efficient renumbering of sites by explicitly
supporting multiple addresses on an interface.
(5) IPv6 supports plug and play operation.

The transition phase from IPv4 to IPv6 has
raised many discussions among the Internet
community. Apart from the network and
hardware part of the issue, a very important
aspect is the modification (porting) of existing
applications so that they become IPv6 enabled.
It is a necessary step in the wider adoption of
IPv6, not only because without them the new
infrastructure becomes useless for the user, but
also because applications have the ability to
clearly demonstrate the advantages of IPv6.
Unfortunately, the vast majority of network
applications in existence today, and especially
multimedia applications, presume the use of the
IPv4 protocol, so a transition to IPv6 will have
to be accompanied by the development of new
applications and/or the modification of the
existing ones, so that they can be used in IPv6
environments. For this reason, we decided to
port to IPv6 the library upon which the

OpenH323 project is based, a large open-source
library ([1], [2]). This way, we are able to use a
wide range of real-time applications over IPv6
and experiment with their performance. It is
also interesting to investigate the behavior of
IPv6 applications using QoS mechanisms, since
they promise to effectively serve real-time
applications in high bandwidth networks. A
number of research projects (6NET [10],
Euro6IX [12], 6INIT [11], KAME [13]) are
actively investigating the migration effort, the
benefits from IPv6 and the performance issues
involved, and have shared or are going to share
their valuable experiences. Research Academic
Computer Technology Institute (CTI) is one of
the participants of the 6NET project, and this
work was partially supported by the 6NET
project founded by the IST program of
European Commission (IST contract No: 2001-
32603) ([10]).

This rest of the paper is organised as
follows: Section 2 is an introduction to the
H.323 protocol and its open-source OpenH323
implementation, and describes the methodology
we used in order to make the OpenH323 project
IPv6-enabled. Sections 3 and 4 present the
evaluation and performance criteria that can
apply to an IPv6 ported application. The
experiments that we have planned in order to
apply these criteria are described in Section 5.
Finally, Section 6 summarizes and concludes
the paper.

2. H.323 standard and OpenH323
library

H.323 ([6]) is an ITU recommendation, which
defines a network architecture and the
associated protocols necessary to voice and
multi-media calls establishment. H.323 is
defined for a packet-based network, and does
not impose any network protocol, which can as
well be IPv4 as IPv6 or IPX. The main entities
of an H.323 based video network are the
following: (1) End points: These are the H.323
clients, which are used by the end users. They
can propose phone, video, fax, and application
sharing functionalities. (2) Gateways: Gateways
can be used for the interconnection between
different networks (for example an IP phone
network and a traditional phone network). (3)

Gatekeepers: Gatekeeper makes it possible to
be freed from the knowledge of called party IP
address. It is then possible to call someone by
his name. The gatekeeper is also able to manage
the billing, and call filtering/authorization. (4)
Multipoint Control Units (MCUs): A
Multipoint Control Unit (MCU) makes it
possible to manage a conference of more than
two end points. Each user connects to the MCU
and then is able to discuss with all the other
connected people.

The OpenH323 project ([4]) develops a
central library, the OpenH323 library, with the
purpose of creating “a full featured,
interoperable, Open Source implementation of
the ITU H.323 teleconferencing protocol that
can be used by personal developers and
commercial users without charge”. The open
source OpenH323 library can be used for the
rapid development of applications that wish to
use the H.323 protocol for multimedia
communications over packet-based networks. It
is written with C++, and currently contains
nearly 100 classes in over 350.000 lines of
source code. There are classes that represent an
H323 connection, various types of H323
channels, gatekeeper and transport protocols.
Internally, the OpenH323 classes do not
directly make use of system libraries. Instead,
when they want to use an operating system
mechanism (e.g. sockets, threads, GUI, I/O),
they make calls to another open source library
called PWLib. It contains classes that
encapsulate I/O, GUI, multi-threading and
networking functionality, and also classes that
represent basic “container” classes such as
arrays, linear lists, sorted lists (RB Tree) and
dictionaries (hash tables). Being such a general-
purpose library results in a source code base of
over 300 classes and almost 150.000 source
code lines. The goal of the PWLib library is, by
providing the necessary operating system
abstractions, to support applications that can
run both on Microsoft Windows and Unix
systems, without modifying the source code. By
being based on the PWLib, the OpenH323
library manages to be portable between
Windows and Unix systems.

A number of applications have been
developed on top of the OpenH323 library, both
within and outside the OpenH323 project. They

include a command line H.323 client, an H.323
videoconferencing server (MCU), H.323
answering machine, H.323 gatekeeper, H.323 to
PSTN and fax modem to T.38 gateways, and
GnomeMeeting ([5]), a graphical H.323 client
for Unix. Most of these applications require
little additional effort in order to be used over
IPv6 since the base libraries have been ported,
thereby giving us the opportunity to test the
IPv6 stack in various scenarios. Figure 1 gives a
visual representation of the way the OpenH323
and PWLib libraries interconnect and the
architecture of the applications developed on
top of these two libraries.

Applications
(videoconferencing client, MCU, gatekeeper,

answering machine,...)

PWLib library
(PSocket, PChannel, PProcess, PThread,

PSound, ...)

OpenH323 library
(H323Endpoint, H323Transport,
H323Listener, H323Connection,

H323Channel, ...)

Unix facilities
(sockets, I/O, GUI,

threads)

MS Windows
facilities

(sockets, I/O, GUI,
threads)

Figure 1 Relationship of the OpenH323 and
PWLib libraries

Below we present in a step-by-step fashion
the methodology that we used in order to port
the OpenH323 and PWlib libraries to IPv6. It is
intended as a guideline for similar projects that
deal with porting a similarly large library to
IPv6: (1) Study and understand the source code,
highlighting the points where a change in the
program’s logic is probably necessary. (2) Parse
the source code with an automatic tool like
Checkv4.exe ([7]). (3) Modify the source code
lines reported by the automatic tool, which are
probably going to be rather straightforward. (4)
Make any other necessary modifications in
more subtle places not reported by the
automatic tool. (5) Test and debug the code,
correcting any issues that arise. (6) Verify
completeness of porting effort.

Because of the huge size of the code base of
the OpenH323 and PWLib libraries, a thorough

examination line-by-line would be impossible,
and therefore we used an automated tool, in
order to trace down the most obvious IP
protocol dependent points in the source code.
The tool we chose was Checkv4.exe by
Microsoft ([7]), which is offered as part of the
experimental IPv6 stack for Windows 2000. A
problem that quickly arose during our efforts to
port such a large project as OpenH323 to the
IPv6 protocol was how to verify that our work
had been completed successfully and correctly.
The OpenH323 library is a large library that can
support a number of independent applications.
Moreover, since the OpenH323 library makes
use of the facilities offered by the PWLib
library, this library also had to be included in
our porting efforts. We had therefore to inspect
and often modify a large number of classes and
functions.

In general, there are a number of testing
strategies that we followed: (1) High-level
testing: This testing strategy is initially targeted
towards the high-level view of a system. It
emphasizes on testing applications that use a
wide range of functionality from the supporting
libraries, and can therefore reveal the way
different parts of the system interoperate. This
method is very useful for acquiring a larger,
more general picture of the system. (2) Low-
level testing: The opposite approach is to try
and isolate specific classes and methods and try
to test their behavior by using simple test
applications with limited functionality. This
way, errors can be more easily identified and
their origin can be more easily attributed. (3)
Comparative (back-to-back) testing: This
strategy can be used when different versions of
the same system are available (as was our case,
with an IPv4-only version, and an IPv6-enabled
version). The two versions can be tested
together and their operation can be compared.
For our purposes, we used a combination of the
three techniques outlined above, with emphasis
on the third one (back-to-back testing). The fact
that our goal was to modify an already
functioning system meant that back-to-back
testing was very important, both in determining
whether an application operated as should be
expected, and in tracing down the point in
execution where an error appeared.

3. Evaluation of an application
ported to IPv6

There are various parameters that have to be
examined when an application has been ported
to IPv6, that determine the quality and the
usefulness of the porting. Specifically, we
identify the following criteria: (1) Ability to
work with IPv6: Obviously, the application will
have to seamlessly work with the IPv6 protocol.
(2) IPv6 features involved: It is beneficiary if
the application can make use of the new
enhanced features of IPv6, so that these features
can be examined and evaluated. For example,
IPv6 defines the Flow id label that can be used
in order to implement some QoS scheme. (3)
Dependency on IPv4: Following a long-term
approach, the application should not be
dependent on any IPv4 aspect (e.g. the need for
IPv4 DNS or IPv4 LDAP). (4) IPv4-IPv6
simultaneous support: Since IPv4 is going to
co-exist with IPv6 for a long time, it is
preferable for system administrators and
application developers to have a single version
to maintain, that is able to simultaneously
support both IP protocols. (5) RFC
compatibility: Conformance with all IPv6
RFCs, like for example RFC 2732 that defines
the form literal addresses must have in URLs.
(6) Dual-stack safe: The dual stack mechanism
is going to be widely used for the foreseeable
future, so an IPv6-enabled application has to be
able to operate in a system with dual stack. (7)
Multiple DNS: As described earlier, the DNS
mechanism plays an important role for the
communication between IPv4 and IPv6 hosts.
Although some details are hidden from the
application layer, in most cases it still has to be
able to differentiate and handle each returned
address by the DNS resolver properly. (8)
Multicast, anycast: Apart from the unicast
method of communication, IPv6 also makes use
of multicast and introduces anycast. The
multicast mechanism is especially useful for
demanding real-time applications.

Moreover, it is interesting to consider
whether an application running on a dual-stack
host can communicate with an earlier IPv4-only
version of the application also running on a
dual-stack host. By using the mechanism of
IPv4-mapped IPv6 addresses an IPv6 enabled

application operating as a server can
communicate with an IPv4-only version
operating as client. An IPv6 client can
communicate with an IPv4 server only if it uses
its IPv4-mapped IPv6 address. This can be
achieved by using the DNS (Domain Name
Service) mechanism and choosing the A record,
which is returned to the client as the server’s
IPv4-mapped IPv6 address. These observations
are summarized in Table 1. Communication
between IPv4-only and IPv6 nodes can be
achieved using proxies and other application
layer gateways that are going to be used in the
transition phase from IPv4 to IPv6.

Table 1 Interoperability between IPv4 and IPv6
versions running on dual-stack hosts

IPv4 server IPv6 server

IPv4
client

Communicate
using IPv4

Communicate
using IPv4,

server sees IPv4-
mapped IPv6

address

IPv6
client

Can
communicate if
the IPv6 client
uses an IPv4-
mapped IPv6

address

Communicate
using IPv6

4. Performance Criteria
Mainly due to the larger IP header, IPv6 can be
expected to introduce some overhead compared
to IPv4. Comparing the overhead caused by
IPv6 vs. the overhead by IPv4 is a difficult task,
because a lot of factors are involved.
Sometimes overhead can be attributed to a less-
than-optimal implementation of the specific
application with regard to IPv6. Another factor
is the TCP/IP stack itself and the way it has
been implemented. The DNS resolver can also
play a small role, usually against IPv6 because
of the additional AAAA record. It is also clear
that when considering tunneling transition
mechanisms, they will contribute to degraded
performance for IPv6, since IPv6 packets have
to be encapsulated in IPv4 packets and suffer
the additional overhead. Perhaps the most
important criterion is the final user perception
that the application will give. Although it is

highly subjective and can be influenced from a
lot of factors (many of which are outside of the
control of the application or the IPv6 stack
implementation), it is important because it is
connected with the acceptance of the IPv6
protocol. The main characteristic that
determines the user perception when
considering an IPv6 application and its IPv4
counterpart is usually the achieved throughput
by each application version. We are also
interested in the system administrator’s
perception, with regard to the ease of managing
an IPv6-enabled application. This parameter is
influenced a lot by the path taken for the
porting: the development of a new application
executable, or the simultaneous support of both
IP versions by the same executable.

We performed some initial experimentation
with a ported OpenH323 application, and
compared the bandwidth rate required for an
IPv4 and an IPv6 call. The application was a
simple H.323 VoIP application using the G.711
A-Law codec for voice transmission. The tests

were performed on a 10 Mbps Ethernet LAN,
and there was no competition for the VoIP
application we used, so that we could compare
the differences in the bandwidth consumed in
order to achieve the same voice quality. As
shown in Figure 2, IPv6 maintains a data rate at
around 50 Kbps (6.2 KBytes per second), while
IPv4 maintains a data rate at around 47 Kbps
(5.8 KBytes per second), almost 7% lower. This
difference is due to the fact that the Data-Link
layer was carrying 294-byte packets in the case
of IPv4, and 314-byte packets in the case of
IPv6. The standard IPv6 header is 20 bytes
larger than the standard IPv4 header, which
produces the 7% overhead. This is in fact an
expected and known result, since the larger
IPv6 header introduces some overhead,
especially in relatively low-rate transmissions.
We intend to further investigate this behavior,
which makes the use of QoS mechanisms like
the ones described in Section 5 even more
appropriate.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20

time (seconds)

ra
te

 (
b

yt
es

 p
er

 s
ec

o
n

d
)

IPv6
IPv4

Figure 2: IPv4 – IPv6 bandwidth consumption

5. Planned Experiments
We plan to deploy our detailed experiments in a
real environment in two stages. First, we are
going to use the local experimental network
testbed of CTI, and at a second stage we are

going to use the infrastructure of 6NET, the
largest European project on IPv6. Figure 3
presents the local CTI network, as well as the
Greek part of the 6NET research network.

In order to evaluate the IPv6-compatible
version of OpenH323, we have planned the

following experiments, which can be
categorized in 3 main areas:

• Testing scenarios using best-effort: In these
scenarios no QoS mechanism will be used.
Apart from the OpenH323 traffic, we will
use artificially generated traffic using a
traffic generator, which can create and
manage many simultaneous IP connections
(TCP or UDP). It gives the opportunity to
configure the TCP parameters such as TCP
buffer size and TCP window size and
allows the configuration of many
parameters to the IP connections such as IP
address, port number, protocol and packet
size. We intend to fill the bi-directional
links with background traffic, which will be
treated with best effort service. The link
utilization should be at or near 90% and the
packet size should be 40 bytes, 552 bytes
and 1500 bytes. The analogy for each size
is 59%, 32% and 9%, in order to emulate
real traffic as close as possible ([9]). The
TCP and UDP packets analogy should be
70% and 30% respectively.

• Testing scenarios using QoS on gold
service: This time the OpenH323 traffic
will be treated using the gold service. The
basic idea of gold service is that all the in
profile packets must arrive to the
destination, with the minimum possible
delay and jitter. The out of profile packets
may arrive or not, depending on the
network’s status. All the above parameters
must have assigned to a service level
agreement between the network provider
and each client. This service can guarantee
delay, jitter and packet loss. The
mechanisms that will be used are the
following: (1) Classification at the edge
router according to the ports used by the
OpenH323 application. (2) Policing at the
edge router using the token bucket
mechanism. The token bucket profile will
be configured online and is a point for
research. (3) Queue management. At each
router there will be two queues, the first
will serve the gold service and will be the
priority queue. The second will serve the
best effort traffic. The packets that are out
of profile will be served as best effort

traffic. (4) Finally, RED will be used at the
best effort queue for congestion avoidance.

• Testing scenarios using QoS with more
than one class of service: The QoS tests
will then be continued, adding one more
class of service. In particular, the additional
class(es) will have worst treatment than the
gold service but better than best effort. Its
role will be to serve some packets better
than best effort. The testing scenarios will
be the same as above, with the difference
that an additional traffic flow will be
produced for that service. The mechanisms
that are planned to be used, except from the
corresponding for gold traffic are: (1)
Classification at the router according to the
port numbers. (2) Policing at the edge
router using the token bucket algorithm. (3)
Queue management. Three queues will be
used: gold, best effort and one more, which
will serve packets with more weight than
the best effort. This step could be achieved
with the use of Weighted Fair Queuing.

ATHENS
Cisco 7206

THESSALO
NIKI

Cisco 7206

NTUA
Cisco 7206

3Mbit ATM PVC

Gigabit Ethernet

to Munich

ATHENS
GSR 12016

POS

6NET

local CTI network

Cisco 3640

CTI-PATRA
Cisco 7206

CISCO 2610

1Mbit ATM PVC

10Mbs 10Mbs

CISCO 2511
B2B serial

2Mbit

ATM 155

Figure 3: CTI testbed

For each scenario, we are going to compare
the performance of the IPv6 OpenH323
application vs. the IPv4 application, in order to
investigate the way the new Internet Protocol
affects the network. In order to free ourselves
from issues specific to one IPv6 or IPv4
implementation, we are going to use at least 2
different stacks for each scenario, Windows
2000 and Linux. The parameters we are going
to measure for each experiment are packet loss,
delay, jitter, throughput and bandwidth sharing
with competing flows. In addition, the router

configuration in order to increase the
performance of the OpenH323 application is an
issue under investigation during the
experiments.

6. Conclusions and future work
The number of required IP addresses for the
near future (in order to address all the hosts and
embedded systems) is expected to rise to the
order of billions. IPv6 can provide this huge
number of IP addresses, in addition to
providing benefits like auto-configuration
capabilities and QoS support. The larger IPv6
header introduces nevertheless some additional
overhead, which is more significant for low-rate
applications. In order to evaluate an IPv6
application and compare it with an equivalent
IPv4 (if it exists), a number of experiments can
prove useful.

Our future work includes the extension of
the above-mentioned experiments to greater
actual IPv6 networks, and in particular using
the experimental IPv6 network of the 6NET
project ([10]). Moreover, we intend to
investigate possible benefits in the area of
Quality of Service (QoS) by using the Traffic
Class and Flow Label fields in the IPv6 header,
and the benefits in the area of security by using
the Authentication Header and the IP
Encapsulating Security Payload (ESP). In the
area of configuring the QoS mechanisms, we
intend to further experiment and investigate the
proper configuration parameters in order to
optimize the performance of various traffic
classes.

7. References
[1] C. Bouras, A. Gkamas, K. Stamos, “From

IPv4 to IPv6: The case of OpenH323
Library”, SAINT 2003, Orlando, Florida,
27-31 January 2003, pp. 196-199

[2] S. Josset, C. Bouras, A. Gkamas, K.
Stamos, “Adding IPv6 support to H323:
Gnomemeeting/openH323 port”, IST
Mobile & Wireless Communications
Summit 2003, 15-18 June 2003, Aveiro –
Portugal (submitted)

[3] Internet Protocol, Version 6 (IPv6)
Specification - RFC 2460

[4] OpenH323 project,
http://www.openh323.org

[5] GnomeMeeting,
http://www.gnomemeeting.org/

[6] Packetizer, H323 information site,
http://www.packetizer.com/iptel/h323/

[7] Microsoft IPv6 Technology Preview for
Windows 2000,
http://msdn.microsoft.com/downloads/sdks/
platform/tpipv6.asp

[8] CTI/RU6 OpenH323 porting project,
http://ouranos.ceid.upatras.gr/openh323/

[9] K. Thomson, G.J. Miller and R. Wilder,
“Wide Area Internet Traffic Patterns and
Characteristics” in IEEE/ACM Transactions
on Networking, pp 10-23, 1997

[10] 6NET project, http://www.sixnet.org

[11] 6INIT project,
http://www.6init.org/presentations.html

[12] Euro6IX project,
http://www.euro6ix.net

[13] KAME project, http://www.kame.net/

