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ABSTRACT 
In this paper, we present a modification of the ns2 code for the 
RTP/RTCP protocols. The legacy RTP/RTCP code in ns2 has not 
yet been validated but it provides a framework of the protocol’s 
specification for experimental use. We have modified the code by 
adding all the RTP/RTCP protocol’s attributes that are defined in 
RFC 3550 and related to QoS metrics. We have also 
implemented additional algorithms and functions in order to 
enhance our modified code with TCP friendly bandwidth share 
behavior. Our protocol, named RTPUP (“UP” stands for the 
University of Patras), is offered as a package and is fully 
documented so that it can be used for simulations and research 
within the ns2 simulation environment. 

Categories and Subject Descriptors 
I.6 [Simulation and Modeling]: Applications, Model Validation 
and Analysis, Model Development, Simulation Output Analysis, 
Miscellaneous. 

General Terms 
Algorithms, Performance, Design, Standardization, Verification. 

Keywords 
Network Simulator (NS-2), RTP/RTCP protocol, Multimedia 
transmission, TCP Friendly. 

1. INTRODUCTION 
Real time multimedia applications have enjoyed the global 
interest over the last years. These applications are characterized 
by three main properties: the demand for high data transmission 
rate (bandwidth-consuming applications), the sensitiveness to 
packet delays (latency and jitter), and last the tolerance to packet 
losses (packet-loss tolerant applications), when compared to 
other kind of applications. The Transmission Control Protocol 
(TCP) is the dominant and most widely used protocol at the 

transport layer. However, there are three characteristics of this 
protocol that makes it insufficient for real time data delivery:  

 TCP has a built-in retransmission mechanism that may 
be useless for delay-sensitive applications. 

 TCP does not carry any time related information, 
which are needed by real time applications, and lastly, 

 TCP employs a “strict” congestion control mechanism 
that reacts even in the light of a single packet loss event.  

Similarly, the User Datagram Protocol (UDP) does not provide 
any support for multimedia applications. Therefore, the need of a 
new protocol led the research community to design the Real 
Time Protocol (RTP) and the associated RTP Control Protocol 
(RTCP) [1], in order to support multimedia applications. The 
RTP protocol constitutes a new de facto standard and is the 
dominant transport protocol for multimedia data transmission. 

The implementation of the RTP in NS2 [2] is very generic. It 
only provides the main functions of a “common” transport 
protocol and runs on top of UDP. In this work, we extend the 
functionality of the RTP and RTCP code in NS2 to include: 

 The feedback functions that are described [1] and 
related to QoS metrics. 

 TCP friendly behavior with the meaning that the 
transmitted flow consumes no more bandwidth than a TCP 
connection, which is traversing the same path with the 
transmitted flow. 

With these new feedback functions any multimedia application 
can employ the internal mechanisms of the RTP and RTCP for 
Quality of Service (QoS) measurements. The TCP friendly 
bandwidth share mechanism is based on the TCP Friendly Rate 
Control (TFRC) protocol presented in [3]. Our motivation is to 
use the RTP modified code for simulations of multimedia data 
transmission from a server to a number of receivers, through 
multicasting and different multicast RTP streams. The ns2 code 
provides the framework for these simulation scenarios. However, 
one has to extend the code to support these scenarios because the 
RTP code in ns2 cannot support multiple RTP streams running in 
one network node. The rest of this paper is organized as follows: 
The next section briefly describes RTP and the RTCP protocols. 
Section 3 discusses the Algorithmic aspects. The extensions 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
SIMUTools 2008, March 3-7, 2008, Marseille, France. 
Copyright TBA 



made to RTP code in ns2 are presented in section 4, as section 5 
presents the performance evaluation of our modified code. 
Conclusions and future work are discussed in section 6.  

2. REAL TIME PROTOCOL (RTP) AND 
CONTROL RTP (RTCP) 
In this section we briefly discuss the attributes of the Real Time 
Protocol and the associated Control protocol (RTCP) 

2.1 Real Time Protocol (RTP) 
RTP is a real time transport protocol that is usually being used 
on top of the UDP protocol (other transport protocols are also 
being supported by RTP). By saying this we already accept a 
transport protocol on top of other transport protocols and this 
statement may be misleading. On the other hand, RTP is highly 
coupled to the application that it carries. Therefore, RTP would 
be better viewed as a framework for real time applications and 
not only as a transport protocol. RTP neither provides any 
guarantees for data delivery nor packet delivery in order. The 
main functions of RTP include: 

 Identification of payload type 

 Identification of the source sending the RTP packets 

 Timestamps to RTP packets 

 Sequence numbers to RTP packets 

2.2 RTP Control Protocol (RTCP) 
The RTCP protocol provides to participants of the RTP session 
feedback information concerning the network conditions. RTP 
and RTCP protocols use different port numbers. The main 
functions of RTCP are: 

 Network measurements for QoS (packet loss ratio, 
delay jitter, timestamps of sender and receiver reports etc.) 

 Identification of the source sending the RTCP packets 

 Estimation of the session size and scaling mechanisms 

The RTCP sender (SR) and receiver (RR) reports provide direct 
information on the packet losses, cumulative number of RTP 
packets sent by the source and delay jitter. They provide also 
additional fields that can be used for implementation of 
congestion control policies by separate protocols, for example the 
TCP-like flow control, which we have implemented. A separate 
entity, like a network management, can obtain network metrics 
based on the reception of the RTCP reports without actually 
taking part in the RTP session.  
Other information carried by the RTCP packets include a source 
identifier of the transport layer (CNAME), the e-mail address, 
the name, the phone and location of the source originated the 
RTCP report.  

3. ALGORITHMIC ASPECTS 
In this section we describe the algorithm to estimate a TCP 
friendly bandwidth share. Then we explain how we estimate the 
packet loss ratio and the Round trip Time (RTT) that are used for 
the TCP friendly bandwidth calculations. Finally, we present the 

inter-arrival jitter delay estimations, which are based on the RFC 
3550 recommendations. 

3.1 TCP Friendly Bandwidth Share 
Estimations 
The subject of transmission of TCP friendly flows over networks 
has engaged researchers all over the world, [4], [5] and [6]. 
Various adaptation schemes deploy an analytical model of TCP 
[4] in order to estimate a TCP friendly bandwidth share. With the 

use of this model, the average bandwidth share ( i
tcprr _ ) of a 

TCP connection is determined (in bytes/sec) with the following 
equation: 
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where i
tcprr _ is the receiver’s estimation of the TCP 

friendly bandwidth share, P  is the packet size in bytes, l  is the 

packet loss rate, RTTt  is the Round Trip Time (RTT) of the TCP 
connection. 

If the receiver does not experience packet losses the i
tcprr _  must 

not be increased more than a packet / RTT. For this reason the 

receiver calculates the value of i
tcprr _  with the following 

equation (in bytes/sec): 
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Each time the receiver sends a receiver report to the sender it 

includes the average value of i
tcprr _  since the last receiver 

report. 

3.2 Packet Loss Rate Estimation 
Every receiver that joins the RTP session can measure the packet 
loss rate based on RTP packet sequence numbers. In order to 
prevent a single spurious packet loss having an excessive effect 
on the packet loss estimation, the receivers smooth the values of 
packet loss rate using the filter presented in [6], which computes 
the weighted average of the m  most recent loss rate values. The 
authors of [6] have also evaluated this filter and the results are 
very positive. 

3.3 RTT Estimations 
When a receiver i  receives a RTP packet from a sender, it uses 
the following algorithm to estimate the RTT between the sender 
and the receiver: 

 if no feedback has been received before 

 RTT = sqrt(effective_RTT) 
 else 
 RTT = q * RTT + (1-q) * effective_RTT                    (3) 

where, q has a default value of 0.9 



This calculation is based on the sender estimation of the RTT 
time (effective_RTT) and is measured by using the timestamps of 
the RTCP sender and receiver reports. The algorithm above is 
described in [3] with the difference that in the TFRC 
specification the sender makes the RTT estimations. In our 
implementation we have the receivers estimating the RTT time. 

3.4 Inter-arrival Jitter Estimations 
Our implementation for delay jitter calculations is based on the 
algorithm defined in RFC 3550. Shortly explaining, let iS  is the 

RTP timestamp of packet i, and iR  is the arriving time in RTP 

timestamp units of packet i, then for two sequentially packets i 
and j, delay D may be expressed as: 

( ) ( )j i j iD R R S S                 (4) 

This delay variation should be calculated for each RTP packet. 
RFC 3550 suggests a filter function to avoid temporal fluctuation 
and the delay jitter is computed with the use of the following 
equation: 

1(15 /16) (1 /16)i iJ J D         (5) 
All the above-described algorithms are implemented in our RTP 
modified code. 

4. EXTENSIONS TO RTP CODE 
In this section we describe the extensions made to RTP code in 
ns2. Our work is mainly divided into two main areas: 

 Providing the RTP code the additional functionality 
defined in RFC 3550 and related to QoS metrics. 

 Employing TCP friendly bandwidth share mechanisms 
for experimental use. 

The extensions made in the ns2-2.30 version, on a Linux 
platform running Fedora 6 operating system. 

4.1 Software Architecture 
We present the structure of the RTPUP code using the UML 
diagram in figure 1. First of all we have renamed the RTP packet 
header from “hdr_rtp” to “hdr_rtpup” (“up” stands for 
University of Patras) to distinguish our code from the legacy code 
in ns2 in order to avoid confusion within the ns2 users 
community. We also defined new data structures named 
server_report and receiver_report to store the fields of the RTCP 
SR and RR, respectively. A new class named RTPUPReceiver 
was declared to hold the fields that are used by the receiving 
Agents for QoS measurements. Every new instance of the 
RTPUPSession class creates two instances of the RTPUPSource 
and one instance of the RTPUPReceiver classes, accordingly. The 
RTPUPSessionClass is called by the TCL script and in turn two 
new Agents (RTPUPAgent and RTCPUPAgent) are assigned to 
every node in the network that participates in the multicast 
stream. The RTPUPAgent holds all the functionality for sending 
and receiving RTPUP packets, whereas the RTCPUPAgent is 
responsible for transmission and reception of the RTCPUP 
sender and receiver reports. We have implemented a one-to-
many scheme of the RTP/RTCP protocol, in which one sender 
transmits a multicast stream to a set of receivers. It is however, 
easy and quite straightforward to extend the code so that a node 

can be a receiver and at the same time an active sender. This 
applies to VoIP applications in which the sender is also a 
receiver during the VoIP session. Last, new functions are also 
used for the implementation of the algorithms described in the 
previous section.  

We will explain in more details the functionality of the RTPUP 
code in the following paragraphs with the following TCL usage 
example: 
set s0 [new Session/RTPUP] 

$ns at 0.1 "$s0 join-group $group" 

$ns at 1.0 "$s0 transmit 256kb/s" 

$s0 enable-control 1 

 

Figure 1. UML diagram of the RTPUP code 
When a new session is created from the TCL programming 
language script in our simulation environment, a new instance of 
the RTPUPSession class is returned. The constructor of the 
RTPUPSession class initializes the localsrc_ and allsrcs_ 
instances of the RTPUPSource class and also the receivers_, 
which is an instance of the RTPUPReceiver class. The localsrc_ 
stands for the originator of the RTPUP and RTCPUP packets. It 
is possible that the localsrc_ generates only RTCP packets if it is 
only a receiving source in the newly created session. Next line of 
the TCL command calls the above-described functions: 

set s0 [new Session/RTPUP] 

The RTCP packets are originated by all the participants in the 
session. The creation of the RTP and RTCP packets is done by 



calling the RTPUPAgent and RTCPUPAgent classes respectively. 
The instances of these classes are created in the initialization of 
the RTPUPSession TCL class. The two Agents are not active 
until the new session s0 joins a multicast group. We can 
“manually” declare the instances of the RTPUPAgent and 
RTCPUPAgent classes but we recommend the use of the RTPUP 
code for multicast transmission. Next line calls session s0 to 
join the multicast group at 0.1 second: 

$ns at 0.1 "$s0 join-group $group" 

where group is the multicast address. Until now there is no 
transmission of any RTPUP or RTCPUP packets because session 
s0 was simply declared and joined a new multicast group. We 
need to call the start function for session s0 to start transmitting 
RTCP packets at 0.1 second: 

$ns at 0.1 "$s0 start" 

 
Figure 2. Class dependency of RTPUP and RTCPUP packet 

types 
The most important field of the RTCP packets in this initial 
phase is the srcid_, which is the session unique identification. 
This field is an unsigned integer that is unique amongst all 
participants in the multicast group.  

However, the transmission of “real” RTP data packets cannot 
start until the transmit function is called: 

$ns at 1.0 "$s0 transmit 256kb/s" 

The above function provides the “green light” to the 
RTPUPAgent and the transmission of RTPUP packets starts at 
the rate that we have decided in the above command. 

In our implementation we defined a new function in the 
Session/RTPUP TCL class to enable the TFRC friendly 
congestion control. We did it in such manner so the user can 
choose from his TCL script to enable or not this congestion 
control. Therefore, to enable the congestion control the user 
should execute the next command in the TCL script: 

$s0 enable-control 1 

The default value is zero, which means that the congestion 
control is disabled by default. Figure 2 shows the class 
dependency for the creation of the RTPUP and RTCPUP (SR and 
RR) packets. We can see in the UML diagram the new fields that 
we added to provide QoS measurements and also the necessary 
information for the congestion control mechanism. New inline 
functions provide the accessibility to these fields. In the next 
subsections we will discuss and explain how the data collection 
and processing is done and how the TFRC congestion control is 
implemented. 

4.2 Modified and New Functions 
In our RTPUP code we distinguish three major 
functions/modules.  

4.2.1 Send and Receive RTPUP Packets 
RTPUP packets are generated based on a timeout event of 
the RTPUPTimer. The RTPUP Agent creates a new RTPUP 
packet by calling the send function: 

 void RTPUPAgent::sendpkt(){} 

The send function invokes the make packet function, which 
creates the new RTPUP packet and adds the following fields in 
the packet header: 

void RTPUPAgent::makepkt(Packet* p){} 

 the sequence number of the RTP packet.  

rh->seqno() = seqno_++; 

 the source id of the sending source 

rh->srcid() = session_->srcid(); 

 the timestamp 

rh->timestamp()= timestamp_; 

 the receivers which this sender serves with the 
receiver source id field and the effective RTT  

rh->receivers_= session_->receivers_; 

in which the effective RTT is defined by: 

_ LSR DLSReff rtt A t t           (6) 

where, L S Rt  is the time during which the receiver received 

the last SR, D L S Rt  is the time elapsed between the reception 
of the SR last report and the generation of a new RR report, and 
A stands for the current time of the reception of the RR. We will 
see later how the calculation of the effective RTT is done by the 
sender. 



When the receiver receives the RTPUP packet it first calls a 
lookup function to check if the originator of the packet is a 
known source. If not, a new source is added by calling the new-
source function of the Session/RTPUP TCL class. The 
processing of this newly receiving packet follows. We added a 
conditional statement to make sure that the receiving source is 
not identical with the sending source: 

if(rh->srcid()!=localsrc_->srcid()) 

In the ns2 legacy source code the sending source is the first 
source that receives the packet, which it has just sent. In the lack 
of any documentation for the ns2 legacy code we regarded it as a 
flow that would affect our measurements. Therefore, when the 
condition is met, the receiving source extracts the effective RTT 
that the sender has assigned for this receiver by executing the 
next code segment: 

for (RTPUPReceiver* p = rh->receivers_;                     
p != 0; p = p->next) { 

  if(p->srcid() == localsrc_->srcid()) {  
     eff_rtt = p->eff_rtt(); 
    }  
} 
if(eff_rtt != 0 ) { 
 calculate_RTT(eff_rtt);                (7) 
}  

The above lines are straightforward. If the sender and the 
receiver have not exchanged yet any SR or RR reports we assume 
symmetric links to avoid division by zero values. Thus, we set 
the RTT to double the value of the one-way trip. When the 
receiver gets non-zero effective RTT values, (which happens 
within the first seconds after the session establishment), it calls 
function (7) to calculate the estimated RTT time.  
Next the receiver calculates the delay jitter. We use the code that 
is presented in RFC 3550 Appendix A.8. 
 
double transit=arrival -rh->timestamp(); 
double d = transit - s->transit(); 
s->transit(transit); 
 if (d < 0) d = -d; 
s->jitter( s->jitter() + (1./16.) * 
(d - s->jitter())); 
 
where transit is the transit time of the received RTPUP packet, d 
is the difference in time units between two consequent RTPUP 
packets and s->jitter() holds the previous jitter delay 
measurement. 
 

 

Figure 3. State chart of the send and receive functions 

Finally, the receiver of the RTPUP packet assigns the following 
fields to RTPUPSource s: 

//count received RTPUP packets 
s->np(1); 
// count lost RTPUP packets 
s->cum_pkts_lost(pkts_lost); 
//get the extended highest number  
s->ehsr(rh->seqno()); 
// count the number of received bytes 
s->nbytes(mh->size()); 
// the packet size in bytes 
s->ps(mh->size());             

Each RTPUPSession instance keeps in the allsrcs_ field only the 
active sources in the session. Therefore, the receiving source is 
able to look up this field in order to locate the sending source 
identification number. To do so the receiving source invokes the 
lookup function that returns the RTPUPSource object s, which 
is the sending source. We can use the instance s to hold all the 
above values that we desire and add any other fields that we can 
use at a later time. Figure 3 depicts the state chart of the above-
described functions. 

4.2.2 Build RTCPUP Sender and Receiver Report 
Function 
The build function is called by the RTCPUPAgent as a result of 
an RTCPUPTimer time-out event. The sender generates a new 
SR if it has sent RTPUP packets since the previous SR. When 
this condition is met the sender sets the we_sent flag to 1 
and generates a sender report (SR). Next lines present the 
declaration and construction of the SR: 

//add sender report 
sender_report* sr; 
//fill in the report 
sr = new sender_report; 
//assign the sender’s id 
sr->sender_srcid()= localsrc_->srcid(); 
//assign the RTPUP packets sent 
sr->pkts_sent() = localsrc_->np(); 
//assign the total bytes sent 
sr->octets_sent() = localsrc_->nbytes(); 
//include the receivers served 



sr->rcvr_ = receivers_; 
//store the report 
rh_->sr_ = sr; 

The sender includes the total number of RTPUP packets and the 
total number of bytes that has sent since the beginning of the 
session. It also includes the receivers that this source serves. We 
will explain in the next subsection how this instance of the 
RTPUPReceiver class is used by the receiving sources. 

Alternately, each receiver before building the RR it has to 
calculate the TCP friendly bandwidth share. To do so, the 
receiver calculates the fraction of packets lost since the previous 
RR. We derive the algorithm for calculating the loss fraction 
from RFC 3550 specification. The loss fraction is defined as the 
fraction of the RTPUP packets lost over the number of RTPUP 
packets expected in the time interval between two successive 

RRs and has values between (0.0, 1.0). Next code segment 
calculates the loss fraction: 

//calculate loss fraction since previous 
report 
int expected_interval  = sp->ehsr() - 
last_ehsr_; 
last_ehsr_ = sp->ehsr(); 
int lost_interval = expected_interval -  
received; 
if (lost_interval <= 0|| expected_interval 
== 0 ) { 
fraction = 0;} 
else fraction = ((double)lost_interval / 
(double)expected_interval); 
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 Figure 4. State chart of the build report function 

 
// Update the R_tcp according to fraction 
value 
if( sp->np() >= 1) {// I have already 
received RTPUP packets from the source 
if(fraction == 0) { 
increase_rate(sp->ps());                (8) 
} 
else { 
 measure_smooth_loss(fraction); 
 calculateR_tcp(sp->ps()); 
 } 
} 
If the fraction loss is zero the receiver estimates a new 
transmission rate by executing (8) as shown below: 

tx_rate_+=(double)ps/RTT_;   

where, ps is the packet size of the RTPUP packet, RTT_ is the 
estimated round trip time by the receiver and tx_rate_ is the 
previous estimated TCP friendly transmission rate. 

However, zero fraction loss is not always the case and the 
receiver calculates a smooth loss value by invoking the 
measure_smooth_loss(fraction) function: 

double smooth_values = 0; 
for (int i=0; i<7; i++) { 
pkt_loss_history[i+1]= pkt_loss_history[i]; 
} 
pkt_loss_history[0] = fraction; 
    
double temp =0; 
   for(int i=0; i<8; i++) { 
   temp += weight[i]; 
   } 
    
   for (int i =0; i<8; i++) { 



   smooth_values += weight[i] * 
pkt_loss_history[i]; 
   } 
  
   smooth_loss_= smooth_values / temp;  

The receiver has now the smooth loss ratio which is a 
consolidated value based on the previous seven measurements. 
The pkt_loss_history array holds these previous measurements. 
The weight array holds static values. The interesting reader 
can reference [7] for more details on these values. Next step for 
the receiver is to estimate the TCP friendly transmission rate by 
calling the following function that is the implementation of the 
TCP analytical model (1):  

calculateR_tcp(sp->ps());   

where ps() is an inline function that returns the size of the 
RTPUP packet. The receiver needs to know the packet size to 
perform the TCP calculation. We have seen previously when 
describing the receive RTPUP function how we obtained the 
RTPUP packet size and how we assigned this packet size to the 
sending source. We declared this field in the RTPUPSource class 
as different sources may use different packet size and wanted to 
have this direct accessibility.  

After the computation of the various fields the receiver constructs 
the RR in the following lines: 

//add receiver report 
receiver_report* rr; 
rr = new receiver_report; 
//fill the report 
// cumulative packets lost 
rr->cum_pkts_lost()=sp->cum_pkts_lost(); 
// add TCP friendly rate 
rr->R_tcp() = tx_rate_; 
// last time sender report 
rr->LSR() = sp->LSR(); 
// delay since receiving the SR 
rr->DLSR()= now - sp->SRT(); 
//add jitter delay 
rr->jitter() = sp->jitter(); 
//add RR to the RTCPUP packet 
rh_->rr_ = rr; 

4.2.3 Receive Control RTCPUP Packet Function 
We have seen so far how the receivers access the RTPUP packets 
and how both sender and receivers build the SR and RR reports. 
We have also explained how the receivers perform the various 
calculations in order to provide the sender with QoS 
measurements. In this subsection we will describe what the 
actions are from the sender side in order to adjust its 
transmission rate. Therefore, the receive control function is the 
“merging” function in which the results of the program are 
presented and actions take place.  

Upon the reception of a new RTCPUP report sender and 
receivers perform different functions. The sender firs evaluates if 
the originator of this RR does exist in its receiver’s list. At this 
point it has to be mentioned that in the legacy ns2 code the 
allsrcs_ field for the sending source is empty as long as it does 
not received any RTPUP packets from any source. That was the 
reason that led us to define the RTUPReceiver class, so that the 

sending source could be able to keep a list of all the receivers in 
the session it serves. Therefore, if the condition is not met (the 
originator of the RR has not “heard” by the sender) the sender 
adds the originator to his receivers’ list. We use a similar 
function to the ns2 legacy code for constructing the receiver’s 
list:  

enter_rcv(RTPUPReceiver* s) 
The sender processes the RR and calculates the effective RTT 
time as follows: 

eff_rtt = alpha - rh->rr_->LSR() –  

rh->rr_->DLSR(); 
where alpha is the current clock time 

The TCP receiver’s estimation is kept in a separate data 
structure. We use for it an instance of the class list in which its 
size is dynamically updated with the number of its elements so 
that we can hold a fair large amount of receivers. In addition, the 
class list offers a number of built-in functions that are very 
convenient for accessing and sorting its elements. Every time the 
sender receives a new report from the RTCPUP Agents in the 
multicast session it adjusts its transmission rate. The sender 
takes into account the minimum bandwidth estimations from the 
receiver set according to the algorithm below: 

1
_ __ min( ,..., )i

r tcp r tcpnew rate r r                                       (9) 

where, _
i

r tcpr  is the bandwidth estimation of receiver i
rr . At this 

point and in order to prevent oscillations we use a 
noFeedbackTimer to check whether or not the sender has 
received feedback reports from all the receivers within a 
feedback interval. This feedback interval is defined as: 

feedback_interval = 2 * ps/tx_rate_ 

where ps is the packet size of the RTP packet and tx_rate_ is the 
current transmission rate. When the sender does not receive an 
expected RTCPUP report from a receiver within the feedback 
interval it cuts its sending rate to half. This is a congestion 
avoidance mechanism because a lost RTCPUP receiver report 
indicates a congested path. It has been noticed in our 
experimental simulations that this mechanism increases the 
overall performance of the protocol.  

Next the sender updates its transmission rate by calling the 
transmit function in the Session/RTPUP TCL class.  

In the receiver side when the receiver receives an RTCPUP SR it 
stamps the SRT field with the current clock time. The SRT stands 
for the Sender Report Time and this time will be used for the 
calculation of the DLSR : 

source->LSR(rh->timestamp()); 

source->SRT(now);  

With the above described procedures and functions we conclude 
the main modules of our modification to the ns2 RTP legacy 
code.   

Figure 5 shows the state chart of the receive control function 

 



 
Figure 5. State chart of the receive control function 

5. PERFORMANCE EVALUATION 
We evaluate our model with simulations performed with the ns2 
simulation software. Our main objective is first to verify that the 
RTPUP works properly and second that it has indeed friendly 
TCP behavior. 

 
Figure 6. Simulated network topology 

 

5.1 Simulation Environment and Network 
Topology Setup 
Our benchmark for the evaluation of the RTPUP protocol is a 
Local Area Network (LAN), which consists of one multimedia 
server and six heterogeneous receivers. The heterogeneity of the 
receivers lays in the variation of the link capacity, which 
connects the receivers with the LAN. We have intentionally 
created a “bottleneck” between routers 2 and 3 to create two 
different sets of wired receivers. The first set of receivers (Nodes 
1, 2, 3 “fast receivers”) is able to receive at higher bit rates than 
the second set (Nodes 4, 5, 6 “slow receivers”). We run a simple 
simulation scenario in which the multimedia server transmits 
RTPUP traffic at an initial rate of 256Kb/s. The RTCP 
transmission interval is set to 500 msec. At the same time a File 
Transfer Protocol application (FTP) is transmitting TCP packets 
through the same pipe with the RTPUP traffic from Node 7 (TCP 
Agent) to Node 8 (TCP Sink). We run two different simulation 
sets to investigate: 

 The behavior of our proposed protocol towards the 
TCP traffic 

 The behavior of the TFRC implementation in ns2 
towards the same TCP traffic 

 Pros and cons between our implementation and the 
TFRC code in ns2. 

Figure 6 depicts the network topology for the simulated 
scenarios. 
5.2 First Simulation: Transmission of RTPUP 
Multicast Stream with Background TCP 
Traffic 
We initially set the bandwidth capacity of the RTPUP traffic to 
256Kb/s and the RTCPUP reporting interval to 500 msec. 
However, these two parameters do not remain unchangeable and 
adopt their values according to network conditions. As for the 
TCP protocol we use the standard TCP Reno version in ns2.  
The transmission of both RTPUP and TCP traffic starts in the 
beginning of the simulation. We run our simulation for 200 
seconds. In the chart presenting the simulation results (Figure 7) 
we can see the receiving rates from two representing nodes of the 
two different groups (Node 1,”fast receiver” and Node 4, “slow 
receiver”) and also the TCP receiving rate named as “TCP Sink”. 
We extract the following conclusions of the simulation results:  

 The RTPUP protocol presents the characteristics of the 
TCP congestion control mechanism, in which the protocol 
increases its sending rate as long as the end-to-end path is 
congestion-free. This is a direct result of the TCP friendly 
algorithm that has been implemented in our code. 

 The RTPUP protocol has also the characteristics of a 
multiplicative-decrease protocol, similar to TCP protocol. This is 
also the direct result of the implementation of the TCP analytical 
model in our code. However we have not implemented all the 
characteristics of the TCP protocol as our intention is to enrich 
the RTPUP with TCP friendly behavior and not to replicate the 
legacy TCP code.  

 Another important conclusion is that our modified 
RTPUP protocol does have TCP friendly behavior. The TCP 
traffic is being delivered from the source to the destination node, 
although the path is heavily congested by the RTPUP traffic.  



 RTPUP presents the same oscillations with the TCP 
protocol due to the implementation of the congestion control 
mechanism. We observe that when the TCP transmission rate 
increases, the RTUP transmission rate decreases and vice versa.  

 One last important observation is that RTPUP has 
similar delivery ratio to both “slow” and “fast” receivers. This is 
a desired attribute of the protocol as it ensures a fair delivery 
ratio, which most times is above 100 Kb/s. We will see in the 
next simulation test whether or not the TFRC implementation in 
ns2 is able to keep an equal delivery ratio to the whole set of 
receivers. 

 

0

100

200

300

400

500

3 18 33 48 63 78 93 10
8

12
3

13
8

15
3

16
8

18
3

19
8

simulation time (sec)

re
ce

iv
in

g 
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

 
 

Figure 7. RTPUP versus TCP traffic 
5.3 Delay Jitter Measurement 
The delay jitter measurement is straightforward and is being 
done with a procedure that is defined in the TCL Session/RTPUP 
class. The results below (Figure 8) present the measurements of 
the “slow” receiver (Node 4) in contrast to the delay jitter of the 
“fast” receiver (Node 1). These results were measured during the 
previous simulation and are presented in the same chart, 
although the delay jitter values are in different scales. We 
present the results from Node 4 on the left Y-axis and the results 
from Node 1 on the right Y-axis. All the results are represented 
in seconds. We extract the following observations: 

 Fast receivers enjoy minimum values of delay jitter; the 
highest observed delay jitter value throughout the simulation 
time is 2 msecs. We regard this as a good performance metric 
for the RTPUP protocol as the simulation scenario was set up in 
such way to challenge the protocol’s performance. 

 Slow receivers present delay jitter values between 10 and 
15 msec and in general one-way jitter up to 150 msec is 
considered to be acceptable even for VoIP applications.   
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Figure 8. Delay jitter measurements 

 
5.4 Packet Loss Rate Measurement 
For the packet loss rate measurement we have also defined a new 
procedure in the TCL Session/RTPUP class. In this way we can 
get directly this metric from our simulation script. We measure 
the loss rate as the ratio of packets lost over the packets received 
during the sample interval. This sample interval is the time 
elapsed between two consequent Receiver Reports, (RR).  

_ / *100ploss rate plost prcv     (10) 

We can observe from the simulation results (figure 9) that lost 
events occur mainly when the network is heavily congested and 
this happens only for a very short period. We present only the 
packet loss ratio from a “slow” receiver (Node 4) as we have not 
observed any packet losses from fast receivers. This is a desired 
attribute of our RTPUP implementation as we have a multicast 
protocol that is able to transmit at high bit rates in a congested 
network, with low delay jitter and minimal packet losses. In the 
next simulation we will see how our implementation outperforms 
the TFRC implementation in ns2. 
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Figure 9. Loss rate measurements 

 



5.5 Second Simulation: Comparison with the 
TFRC Implementation in ns2 
In the last simulation we compare the TFRC implementation in 
ns2 against our RTP/RTCP with the TCP friendly enhancements. 
The TFRC code in ns2 has been used for simulation by a number 
of researchers and provides an acceptable implementation of the 
TFRC specification.  
The simulation scenario has exact the same network attributes 
with our previous simulation in order to achieve a fair 
comparison. In this case, RTP traffic is transmitted to the same 
set of receivers and the congestion control is left to TFRC 
protocol. We transmit also the same TCP traffic across the 
network from Node 7 to Node 8. Figure 10 depicts the simulation 
results. 
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Figure 10. TFRC in ns2 versus TCP traffic 

 
 We observe from the above results that the ns2 TFRC 
implementation has “smoother” oscillations than our 
implementation, which is a desired attribute especially for video 
transmission. The TCP friendly behavior is also stable except for 
some cases, in which TCP traffic is reduced to zero. In our 
implementation the TCP traffic has always equal or higher values 
when compared to the initial transmission rate. 

 A second observation is that although Node 1 (“fast 
receiver”) enjoys high receiving rates, Node 4 (“slow receiver”) 
has very low receiving rates. However, it has to be mentioned 
that the TFRC code in ns2 is used for unicast transmission. Thus, 
the sender transmits different unicast streams to each one of the 
receivers and adjusts its transmission rate accordingly.  

 Our final conclusion is that our RTP/RTCP implementation 
introduces very good characteristics when we have multicast 
video stream that is transmitted via a congested path. The code 
and the implementation complexity of our implementation are 
very low when compared to the TFRC module in ns2. 

6. CONCLUSIONS/FUTURE WORK 
We present in this work an extension of the RTP code in ns2. 
Our motivation was to enrich the functionality of the existing 
code by including all the RTP/RTCP protocol’s specification in 

RFC 3550, which are related to QoS metrics. We also extended 
our code to enhance it with TFRC mechanisms for research and 
experimental use. Our effort was to keep the functions and the 
data fields of the original ns2 code, to modify existing functions 
and to define only the necessary functions for the implementation 
of the new algorithms. We tried also to keep the “code style” of 
the ns2, document our code and offer it as a package for easier 
integration into ns2 libraries. There were several simulation runs 
and tests along with those that are presented in this work in order 
to verify that we get the correct QoS measurements. Simulation 
results show that the RTPUP performance has certain advantages 
for multicast transmission of delay sensitive data, such as VoIP 
and video streaming. In our future work we will extend the 
RTUP code to support simultaneous RTPUP multicast streams in 
one node for experimental use. Finally, simulation examples, 
sources and documentation are available in the following URL: 
http://ru6.cti.gr/ru6/ns_rtp_home.php 
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