
Extending the Functionality of RTP/RTCP Implementation
in Network Simulator (NS-2) to support TCP friendly

congestion control
Christos Bouras

Research Academic Computer
Technology Institute and University

of Patras
N. Kazantzaki Str., University of

Patras, 26500 Rion, Greece
+30 2610 960375

bouras@cti.gr

Apostolos Gkamas
Research Academic Computer

Technology Institute and University
of Patras

N. Kazantzaki Str., University of
Patras, 26500 Rion, Greece

+30 2610 960465

gkamas@cti.gr

Georgios Kioumourtzis
University of Patras, Department of

Computer Engineering and
Informatics

University of Patras, 26500, Rion,
Patras, Greece

+30 2610 960316

gkioumou@ceid.upatras.gr
ABSTRACT
In this paper, we present a modification of the ns2 code for the
RTP/RTCP protocols. The legacy RTP/RTCP code in ns2 has not
yet been validated but it provides a framework of the protocol’s
specification for experimental use. We have modified the code by
adding all the RTP/RTCP protocol’s attributes that are defined in
RFC 3550 and related to QoS metrics. We have also
implemented additional algorithms and functions in order to
enhance our modified code with TCP friendly bandwidth share
behavior. Our protocol, named RTPUP (“UP” stands for the
University of Patras), is offered as a package and is fully
documented so that it can be used for simulations and research
within the ns2 simulation environment.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications, Model Validation
and Analysis, Model Development, Simulation Output Analysis,
Miscellaneous.

General Terms
Algorithms, Performance, Design, Standardization, Verification.

Keywords
Network Simulator (NS-2), RTP/RTCP protocol, Multimedia
transmission, TCP Friendly.

1. INTRODUCTION
Real time multimedia applications have enjoyed the global
interest over the last years. These applications are characterized
by three main properties: the demand for high data transmission
rate (bandwidth-consuming applications), the sensitiveness to
packet delays (latency and jitter), and last the tolerance to packet
losses (packet-loss tolerant applications), when compared to
other kind of applications. The Transmission Control Protocol
(TCP) is the dominant and most widely used protocol at the

transport layer. However, there are three characteristics of this
protocol that makes it insufficient for real time data delivery:

 TCP has a built-in retransmission mechanism that may
be useless for delay-sensitive applications.

 TCP does not carry any time related information,
which are needed by real time applications, and lastly,

 TCP employs a “strict” congestion control mechanism
that reacts even in the light of a single packet loss event.

Similarly, the User Datagram Protocol (UDP) does not provide
any support for multimedia applications. Therefore, the need of a
new protocol led the research community to design the Real
Time Protocol (RTP) and the associated RTP Control Protocol
(RTCP) [1], in order to support multimedia applications. The
RTP protocol constitutes a new de facto standard and is the
dominant transport protocol for multimedia data transmission.

The implementation of the RTP in NS2 [2] is very generic. It
only provides the main functions of a “common” transport
protocol and runs on top of UDP. In this work, we extend the
functionality of the RTP and RTCP code in NS2 to include:

 The feedback functions that are described [1] and
related to QoS metrics.

 TCP friendly behavior with the meaning that the
transmitted flow consumes no more bandwidth than a TCP
connection, which is traversing the same path with the
transmitted flow.

With these new feedback functions any multimedia application
can employ the internal mechanisms of the RTP and RTCP for
Quality of Service (QoS) measurements. The TCP friendly
bandwidth share mechanism is based on the TCP Friendly Rate
Control (TFRC) protocol presented in [3]. Our motivation is to
use the RTP modified code for simulations of multimedia data
transmission from a server to a number of receivers, through
multicasting and different multicast RTP streams. The ns2 code
provides the framework for these simulation scenarios. However,
one has to extend the code to support these scenarios because the
RTP code in ns2 cannot support multiple RTP streams running in
one network node. The rest of this paper is organized as follows:
The next section briefly describes RTP and the RTCP protocols.
Section 3 discusses the Algorithmic aspects. The extensions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008, March 3-7, 2008, Marseille, France.
Copyright TBA

made to RTP code in ns2 are presented in section 4, as section 5
presents the performance evaluation of our modified code.
Conclusions and future work are discussed in section 6.

2. REAL TIME PROTOCOL (RTP) AND
CONTROL RTP (RTCP)
In this section we briefly discuss the attributes of the Real Time
Protocol and the associated Control protocol (RTCP)

2.1 Real Time Protocol (RTP)
RTP is a real time transport protocol that is usually being used
on top of the UDP protocol (other transport protocols are also
being supported by RTP). By saying this we already accept a
transport protocol on top of other transport protocols and this
statement may be misleading. On the other hand, RTP is highly
coupled to the application that it carries. Therefore, RTP would
be better viewed as a framework for real time applications and
not only as a transport protocol. RTP neither provides any
guarantees for data delivery nor packet delivery in order. The
main functions of RTP include:

 Identification of payload type

 Identification of the source sending the RTP packets

 Timestamps to RTP packets

 Sequence numbers to RTP packets

2.2 RTP Control Protocol (RTCP)
The RTCP protocol provides to participants of the RTP session
feedback information concerning the network conditions. RTP
and RTCP protocols use different port numbers. The main
functions of RTCP are:

 Network measurements for QoS (packet loss ratio,
delay jitter, timestamps of sender and receiver reports etc.)

 Identification of the source sending the RTCP packets

 Estimation of the session size and scaling mechanisms

The RTCP sender (SR) and receiver (RR) reports provide direct
information on the packet losses, cumulative number of RTP
packets sent by the source and delay jitter. They provide also
additional fields that can be used for implementation of
congestion control policies by separate protocols, for example the
TCP-like flow control, which we have implemented. A separate
entity, like a network management, can obtain network metrics
based on the reception of the RTCP reports without actually
taking part in the RTP session.
Other information carried by the RTCP packets include a source
identifier of the transport layer (CNAME), the e-mail address,
the name, the phone and location of the source originated the
RTCP report.

3. ALGORITHMIC ASPECTS
In this section we describe the algorithm to estimate a TCP
friendly bandwidth share. Then we explain how we estimate the
packet loss ratio and the Round trip Time (RTT) that are used for
the TCP friendly bandwidth calculations. Finally, we present the

inter-arrival jitter delay estimations, which are based on the RFC
3550 recommendations.

3.1 TCP Friendly Bandwidth Share
Estimations
The subject of transmission of TCP friendly flows over networks
has engaged researchers all over the world, [4], [5] and [6].
Various adaptation schemes deploy an analytical model of TCP
[4] in order to estimate a TCP friendly bandwidth share. With the

use of this model, the average bandwidth share (i
tcprr _) of a

TCP connection is determined (in bytes/sec) with the following
equation:

)321()
8

3
3,1min(4

3
2 2

_

ii
iie

RTT
iie

RTT

i
tcpr

ll
l

t
l

t

Pr

 (1)

where i
tcprr _ is the receiver’s estimation of the TCP

friendly bandwidth share, P is the packet size in bytes, l is the

packet loss rate, RTTt is the Round Trip Time (RTT) of the TCP
connection.

If the receiver does not experience packet losses the i
tcprr _ must

not be increased more than a packet / RTT. For this reason the

receiver calculates the value of i
tcprr _ with the following

equation (in bytes/sec):

P
t

rr ie
RTT

i
tcpr

i
tcpr

1
__ (2)

Each time the receiver sends a receiver report to the sender it

includes the average value of i
tcprr _ since the last receiver

report.

3.2 Packet Loss Rate Estimation
Every receiver that joins the RTP session can measure the packet
loss rate based on RTP packet sequence numbers. In order to
prevent a single spurious packet loss having an excessive effect
on the packet loss estimation, the receivers smooth the values of
packet loss rate using the filter presented in [6], which computes
the weighted average of the m most recent loss rate values. The
authors of [6] have also evaluated this filter and the results are
very positive.

3.3 RTT Estimations
When a receiver i receives a RTP packet from a sender, it uses
the following algorithm to estimate the RTT between the sender
and the receiver:

 if no feedback has been received before

 RTT = sqrt(effective_RTT)
 else
 RTT = q * RTT + (1-q) * effective_RTT (3)

where, q has a default value of 0.9

This calculation is based on the sender estimation of the RTT
time (effective_RTT) and is measured by using the timestamps of
the RTCP sender and receiver reports. The algorithm above is
described in [3] with the difference that in the TFRC
specification the sender makes the RTT estimations. In our
implementation we have the receivers estimating the RTT time.

3.4 Inter-arrival Jitter Estimations
Our implementation for delay jitter calculations is based on the
algorithm defined in RFC 3550. Shortly explaining, let iS is the

RTP timestamp of packet i, and iR is the arriving time in RTP

timestamp units of packet i, then for two sequentially packets i
and j, delay D may be expressed as:

() ()j i j iD R R S S (4)

This delay variation should be calculated for each RTP packet.
RFC 3550 suggests a filter function to avoid temporal fluctuation
and the delay jitter is computed with the use of the following
equation:

1(15 /16) (1 /16)i iJ J D (5)
All the above-described algorithms are implemented in our RTP
modified code.

4. EXTENSIONS TO RTP CODE
In this section we describe the extensions made to RTP code in
ns2. Our work is mainly divided into two main areas:

 Providing the RTP code the additional functionality
defined in RFC 3550 and related to QoS metrics.

 Employing TCP friendly bandwidth share mechanisms
for experimental use.

The extensions made in the ns2-2.30 version, on a Linux
platform running Fedora 6 operating system.

4.1 Software Architecture
We present the structure of the RTPUP code using the UML
diagram in figure 1. First of all we have renamed the RTP packet
header from “hdr_rtp” to “hdr_rtpup” (“up” stands for
University of Patras) to distinguish our code from the legacy code
in ns2 in order to avoid confusion within the ns2 users
community. We also defined new data structures named
server_report and receiver_report to store the fields of the RTCP
SR and RR, respectively. A new class named RTPUPReceiver
was declared to hold the fields that are used by the receiving
Agents for QoS measurements. Every new instance of the
RTPUPSession class creates two instances of the RTPUPSource
and one instance of the RTPUPReceiver classes, accordingly. The
RTPUPSessionClass is called by the TCL script and in turn two
new Agents (RTPUPAgent and RTCPUPAgent) are assigned to
every node in the network that participates in the multicast
stream. The RTPUPAgent holds all the functionality for sending
and receiving RTPUP packets, whereas the RTCPUPAgent is
responsible for transmission and reception of the RTCPUP
sender and receiver reports. We have implemented a one-to-
many scheme of the RTP/RTCP protocol, in which one sender
transmits a multicast stream to a set of receivers. It is however,
easy and quite straightforward to extend the code so that a node

can be a receiver and at the same time an active sender. This
applies to VoIP applications in which the sender is also a
receiver during the VoIP session. Last, new functions are also
used for the implementation of the algorithms described in the
previous section.

We will explain in more details the functionality of the RTPUP
code in the following paragraphs with the following TCL usage
example:
set s0 [new Session/RTPUP]

$ns at 0.1 "$s0 join-group $group"

$ns at 1.0 "$s0 transmit 256kb/s"

$s0 enable-control 1

Figure 1. UML diagram of the RTPUP code
When a new session is created from the TCL programming
language script in our simulation environment, a new instance of
the RTPUPSession class is returned. The constructor of the
RTPUPSession class initializes the localsrc_ and allsrcs_
instances of the RTPUPSource class and also the receivers_,
which is an instance of the RTPUPReceiver class. The localsrc_
stands for the originator of the RTPUP and RTCPUP packets. It
is possible that the localsrc_ generates only RTCP packets if it is
only a receiving source in the newly created session. Next line of
the TCL command calls the above-described functions:

set s0 [new Session/RTPUP]

The RTCP packets are originated by all the participants in the
session. The creation of the RTP and RTCP packets is done by

calling the RTPUPAgent and RTCPUPAgent classes respectively.
The instances of these classes are created in the initialization of
the RTPUPSession TCL class. The two Agents are not active
until the new session s0 joins a multicast group. We can
“manually” declare the instances of the RTPUPAgent and
RTCPUPAgent classes but we recommend the use of the RTPUP
code for multicast transmission. Next line calls session s0 to
join the multicast group at 0.1 second:

$ns at 0.1 "$s0 join-group $group"

where group is the multicast address. Until now there is no
transmission of any RTPUP or RTCPUP packets because session
s0 was simply declared and joined a new multicast group. We
need to call the start function for session s0 to start transmitting
RTCP packets at 0.1 second:

$ns at 0.1 "$s0 start"

Figure 2. Class dependency of RTPUP and RTCPUP packet

types
The most important field of the RTCP packets in this initial
phase is the srcid_, which is the session unique identification.
This field is an unsigned integer that is unique amongst all
participants in the multicast group.

However, the transmission of “real” RTP data packets cannot
start until the transmit function is called:

$ns at 1.0 "$s0 transmit 256kb/s"

The above function provides the “green light” to the
RTPUPAgent and the transmission of RTPUP packets starts at
the rate that we have decided in the above command.

In our implementation we defined a new function in the
Session/RTPUP TCL class to enable the TFRC friendly
congestion control. We did it in such manner so the user can
choose from his TCL script to enable or not this congestion
control. Therefore, to enable the congestion control the user
should execute the next command in the TCL script:

$s0 enable-control 1

The default value is zero, which means that the congestion
control is disabled by default. Figure 2 shows the class
dependency for the creation of the RTPUP and RTCPUP (SR and
RR) packets. We can see in the UML diagram the new fields that
we added to provide QoS measurements and also the necessary
information for the congestion control mechanism. New inline
functions provide the accessibility to these fields. In the next
subsections we will discuss and explain how the data collection
and processing is done and how the TFRC congestion control is
implemented.

4.2 Modified and New Functions
In our RTPUP code we distinguish three major
functions/modules.

4.2.1 Send and Receive RTPUP Packets
RTPUP packets are generated based on a timeout event of
the RTPUPTimer. The RTPUP Agent creates a new RTPUP
packet by calling the send function:

 void RTPUPAgent::sendpkt(){}

The send function invokes the make packet function, which
creates the new RTPUP packet and adds the following fields in
the packet header:

void RTPUPAgent::makepkt(Packet* p){}

 the sequence number of the RTP packet.

rh->seqno() = seqno_++;

 the source id of the sending source

rh->srcid() = session_->srcid();

 the timestamp

rh->timestamp()= timestamp_;

 the receivers which this sender serves with the
receiver source id field and the effective RTT

rh->receivers_= session_->receivers_;

in which the effective RTT is defined by:

_ LSR DLSReff rtt A t t (6)

where, L S Rt is the time during which the receiver received

the last SR, D L S Rt is the time elapsed between the reception
of the SR last report and the generation of a new RR report, and
A stands for the current time of the reception of the RR. We will
see later how the calculation of the effective RTT is done by the
sender.

When the receiver receives the RTPUP packet it first calls a
lookup function to check if the originator of the packet is a
known source. If not, a new source is added by calling the new-
source function of the Session/RTPUP TCL class. The
processing of this newly receiving packet follows. We added a
conditional statement to make sure that the receiving source is
not identical with the sending source:

if(rh->srcid()!=localsrc_->srcid())

In the ns2 legacy source code the sending source is the first
source that receives the packet, which it has just sent. In the lack
of any documentation for the ns2 legacy code we regarded it as a
flow that would affect our measurements. Therefore, when the
condition is met, the receiving source extracts the effective RTT
that the sender has assigned for this receiver by executing the
next code segment:

for (RTPUPReceiver* p = rh->receivers_;
p != 0; p = p->next) {

 if(p->srcid() == localsrc_->srcid()) {
 eff_rtt = p->eff_rtt();
 }
}
if(eff_rtt != 0) {
 calculate_RTT(eff_rtt); (7)
}

The above lines are straightforward. If the sender and the
receiver have not exchanged yet any SR or RR reports we assume
symmetric links to avoid division by zero values. Thus, we set
the RTT to double the value of the one-way trip. When the
receiver gets non-zero effective RTT values, (which happens
within the first seconds after the session establishment), it calls
function (7) to calculate the estimated RTT time.
Next the receiver calculates the delay jitter. We use the code that
is presented in RFC 3550 Appendix A.8.

double transit=arrival -rh->timestamp();
double d = transit - s->transit();
s->transit(transit);
 if (d < 0) d = -d;
s->jitter(s->jitter() + (1./16.) *
(d - s->jitter()));

where transit is the transit time of the received RTPUP packet, d
is the difference in time units between two consequent RTPUP
packets and s->jitter() holds the previous jitter delay
measurement.

Figure 3. State chart of the send and receive functions

Finally, the receiver of the RTPUP packet assigns the following
fields to RTPUPSource s:

//count received RTPUP packets
s->np(1);
// count lost RTPUP packets
s->cum_pkts_lost(pkts_lost);
//get the extended highest number
s->ehsr(rh->seqno());
// count the number of received bytes
s->nbytes(mh->size());
// the packet size in bytes
s->ps(mh->size());

Each RTPUPSession instance keeps in the allsrcs_ field only the
active sources in the session. Therefore, the receiving source is
able to look up this field in order to locate the sending source
identification number. To do so the receiving source invokes the
lookup function that returns the RTPUPSource object s, which
is the sending source. We can use the instance s to hold all the
above values that we desire and add any other fields that we can
use at a later time. Figure 3 depicts the state chart of the above-
described functions.

4.2.2 Build RTCPUP Sender and Receiver Report
Function
The build function is called by the RTCPUPAgent as a result of
an RTCPUPTimer time-out event. The sender generates a new
SR if it has sent RTPUP packets since the previous SR. When
this condition is met the sender sets the we_sent flag to 1
and generates a sender report (SR). Next lines present the
declaration and construction of the SR:

//add sender report
sender_report* sr;
//fill in the report
sr = new sender_report;
//assign the sender’s id
sr->sender_srcid()= localsrc_->srcid();
//assign the RTPUP packets sent
sr->pkts_sent() = localsrc_->np();
//assign the total bytes sent
sr->octets_sent() = localsrc_->nbytes();
//include the receivers served

sr->rcvr_ = receivers_;
//store the report
rh_->sr_ = sr;

The sender includes the total number of RTPUP packets and the
total number of bytes that has sent since the beginning of the
session. It also includes the receivers that this source serves. We
will explain in the next subsection how this instance of the
RTPUPReceiver class is used by the receiving sources.

Alternately, each receiver before building the RR it has to
calculate the TCP friendly bandwidth share. To do so, the
receiver calculates the fraction of packets lost since the previous
RR. We derive the algorithm for calculating the loss fraction
from RFC 3550 specification. The loss fraction is defined as the
fraction of the RTPUP packets lost over the number of RTPUP
packets expected in the time interval between two successive

RRs and has values between (0.0, 1.0). Next code segment
calculates the loss fraction:

//calculate loss fraction since previous
report
int expected_interval = sp->ehsr() -
last_ehsr_;
last_ehsr_ = sp->ehsr();
int lost_interval = expected_interval -
received;
if (lost_interval <= 0|| expected_interval
== 0) {
fraction = 0;}
else fraction = ((double)lost_interval /
(double)expected_interval);

rt cp ti meou t

t he s ender rep orts
t he t otal numb er
o f RT P pac kets and
b ytes sent

S ende r Re port

Buil d
repo rt

w e_sen t = 1

Rec eive r Re port

me asur e fra ctio n
loss

DLS R = now - SRT

c alcu late DLSR in creas e ra te

calc ulate new
rate

f racti on_l oss = 0

me asure
smoo th lo ss

 Figure 4. State chart of the build report function

// Update the R_tcp according to fraction
value
if(sp->np() >= 1) {// I have already
received RTPUP packets from the source
if(fraction == 0) {
increase_rate(sp->ps()); (8)
}
else {
 measure_smooth_loss(fraction);
 calculateR_tcp(sp->ps());
 }
}
If the fraction loss is zero the receiver estimates a new
transmission rate by executing (8) as shown below:

tx_rate_+=(double)ps/RTT_;

where, ps is the packet size of the RTPUP packet, RTT_ is the
estimated round trip time by the receiver and tx_rate_ is the
previous estimated TCP friendly transmission rate.

However, zero fraction loss is not always the case and the
receiver calculates a smooth loss value by invoking the
measure_smooth_loss(fraction) function:

double smooth_values = 0;
for (int i=0; i<7; i++) {
pkt_loss_history[i+1]= pkt_loss_history[i];
}
pkt_loss_history[0] = fraction;

double temp =0;
 for(int i=0; i<8; i++) {
 temp += weight[i];
 }

 for (int i =0; i<8; i++) {

 smooth_values += weight[i] *
pkt_loss_history[i];
 }

 smooth_loss_= smooth_values / temp;

The receiver has now the smooth loss ratio which is a
consolidated value based on the previous seven measurements.
The pkt_loss_history array holds these previous measurements.
The weight array holds static values. The interesting reader
can reference [7] for more details on these values. Next step for
the receiver is to estimate the TCP friendly transmission rate by
calling the following function that is the implementation of the
TCP analytical model (1):

calculateR_tcp(sp->ps());

where ps() is an inline function that returns the size of the
RTPUP packet. The receiver needs to know the packet size to
perform the TCP calculation. We have seen previously when
describing the receive RTPUP function how we obtained the
RTPUP packet size and how we assigned this packet size to the
sending source. We declared this field in the RTPUPSource class
as different sources may use different packet size and wanted to
have this direct accessibility.

After the computation of the various fields the receiver constructs
the RR in the following lines:

//add receiver report
receiver_report* rr;
rr = new receiver_report;
//fill the report
// cumulative packets lost
rr->cum_pkts_lost()=sp->cum_pkts_lost();
// add TCP friendly rate
rr->R_tcp() = tx_rate_;
// last time sender report
rr->LSR() = sp->LSR();
// delay since receiving the SR
rr->DLSR()= now - sp->SRT();
//add jitter delay
rr->jitter() = sp->jitter();
//add RR to the RTCPUP packet
rh_->rr_ = rr;

4.2.3 Receive Control RTCPUP Packet Function
We have seen so far how the receivers access the RTPUP packets
and how both sender and receivers build the SR and RR reports.
We have also explained how the receivers perform the various
calculations in order to provide the sender with QoS
measurements. In this subsection we will describe what the
actions are from the sender side in order to adjust its
transmission rate. Therefore, the receive control function is the
“merging” function in which the results of the program are
presented and actions take place.

Upon the reception of a new RTCPUP report sender and
receivers perform different functions. The sender firs evaluates if
the originator of this RR does exist in its receiver’s list. At this
point it has to be mentioned that in the legacy ns2 code the
allsrcs_ field for the sending source is empty as long as it does
not received any RTPUP packets from any source. That was the
reason that led us to define the RTUPReceiver class, so that the

sending source could be able to keep a list of all the receivers in
the session it serves. Therefore, if the condition is not met (the
originator of the RR has not “heard” by the sender) the sender
adds the originator to his receivers’ list. We use a similar
function to the ns2 legacy code for constructing the receiver’s
list:

enter_rcv(RTPUPReceiver* s)
The sender processes the RR and calculates the effective RTT
time as follows:

eff_rtt = alpha - rh->rr_->LSR() –

rh->rr_->DLSR();
where alpha is the current clock time

The TCP receiver’s estimation is kept in a separate data
structure. We use for it an instance of the class list in which its
size is dynamically updated with the number of its elements so
that we can hold a fair large amount of receivers. In addition, the
class list offers a number of built-in functions that are very
convenient for accessing and sorting its elements. Every time the
sender receives a new report from the RTCPUP Agents in the
multicast session it adjusts its transmission rate. The sender
takes into account the minimum bandwidth estimations from the
receiver set according to the algorithm below:

1
_ __ min(,...,)i

r tcp r tcpnew rate r r (9)

where, _
i

r tcpr is the bandwidth estimation of receiver i
rr . At this

point and in order to prevent oscillations we use a
noFeedbackTimer to check whether or not the sender has
received feedback reports from all the receivers within a
feedback interval. This feedback interval is defined as:

feedback_interval = 2 * ps/tx_rate_

where ps is the packet size of the RTP packet and tx_rate_ is the
current transmission rate. When the sender does not receive an
expected RTCPUP report from a receiver within the feedback
interval it cuts its sending rate to half. This is a congestion
avoidance mechanism because a lost RTCPUP receiver report
indicates a congested path. It has been noticed in our
experimental simulations that this mechanism increases the
overall performance of the protocol.

Next the sender updates its transmission rate by calling the
transmit function in the Session/RTPUP TCL class.

In the receiver side when the receiver receives an RTCPUP SR it
stamps the SRT field with the current clock time. The SRT stands
for the Sender Report Time and this time will be used for the
calculation of the DLSR :

source->LSR(rh->timestamp());

source->SRT(now);

With the above described procedures and functions we conclude
the main modules of our modification to the ns2 RTP legacy
code.

Figure 5 shows the state chart of the receive control function

Figure 5. State chart of the receive control function

5. PERFORMANCE EVALUATION
We evaluate our model with simulations performed with the ns2
simulation software. Our main objective is first to verify that the
RTPUP works properly and second that it has indeed friendly
TCP behavior.

Figure 6. Simulated network topology

5.1 Simulation Environment and Network
Topology Setup
Our benchmark for the evaluation of the RTPUP protocol is a
Local Area Network (LAN), which consists of one multimedia
server and six heterogeneous receivers. The heterogeneity of the
receivers lays in the variation of the link capacity, which
connects the receivers with the LAN. We have intentionally
created a “bottleneck” between routers 2 and 3 to create two
different sets of wired receivers. The first set of receivers (Nodes
1, 2, 3 “fast receivers”) is able to receive at higher bit rates than
the second set (Nodes 4, 5, 6 “slow receivers”). We run a simple
simulation scenario in which the multimedia server transmits
RTPUP traffic at an initial rate of 256Kb/s. The RTCP
transmission interval is set to 500 msec. At the same time a File
Transfer Protocol application (FTP) is transmitting TCP packets
through the same pipe with the RTPUP traffic from Node 7 (TCP
Agent) to Node 8 (TCP Sink). We run two different simulation
sets to investigate:

 The behavior of our proposed protocol towards the
TCP traffic

 The behavior of the TFRC implementation in ns2
towards the same TCP traffic

 Pros and cons between our implementation and the
TFRC code in ns2.

Figure 6 depicts the network topology for the simulated
scenarios.
5.2 First Simulation: Transmission of RTPUP
Multicast Stream with Background TCP
Traffic
We initially set the bandwidth capacity of the RTPUP traffic to
256Kb/s and the RTCPUP reporting interval to 500 msec.
However, these two parameters do not remain unchangeable and
adopt their values according to network conditions. As for the
TCP protocol we use the standard TCP Reno version in ns2.
The transmission of both RTPUP and TCP traffic starts in the
beginning of the simulation. We run our simulation for 200
seconds. In the chart presenting the simulation results (Figure 7)
we can see the receiving rates from two representing nodes of the
two different groups (Node 1,”fast receiver” and Node 4, “slow
receiver”) and also the TCP receiving rate named as “TCP Sink”.
We extract the following conclusions of the simulation results:

 The RTPUP protocol presents the characteristics of the
TCP congestion control mechanism, in which the protocol
increases its sending rate as long as the end-to-end path is
congestion-free. This is a direct result of the TCP friendly
algorithm that has been implemented in our code.

 The RTPUP protocol has also the characteristics of a
multiplicative-decrease protocol, similar to TCP protocol. This is
also the direct result of the implementation of the TCP analytical
model in our code. However we have not implemented all the
characteristics of the TCP protocol as our intention is to enrich
the RTPUP with TCP friendly behavior and not to replicate the
legacy TCP code.

 Another important conclusion is that our modified
RTPUP protocol does have TCP friendly behavior. The TCP
traffic is being delivered from the source to the destination node,
although the path is heavily congested by the RTPUP traffic.

 RTPUP presents the same oscillations with the TCP
protocol due to the implementation of the congestion control
mechanism. We observe that when the TCP transmission rate
increases, the RTUP transmission rate decreases and vice versa.

 One last important observation is that RTPUP has
similar delivery ratio to both “slow” and “fast” receivers. This is
a desired attribute of the protocol as it ensures a fair delivery
ratio, which most times is above 100 Kb/s. We will see in the
next simulation test whether or not the TFRC implementation in
ns2 is able to keep an equal delivery ratio to the whole set of
receivers.

0

100

200

300

400

500

3 18 33 48 63 78 93 10
8

12
3

13
8

15
3

16
8

18
3

19
8

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

Figure 7. RTPUP versus TCP traffic
5.3 Delay Jitter Measurement
The delay jitter measurement is straightforward and is being
done with a procedure that is defined in the TCL Session/RTPUP
class. The results below (Figure 8) present the measurements of
the “slow” receiver (Node 4) in contrast to the delay jitter of the
“fast” receiver (Node 1). These results were measured during the
previous simulation and are presented in the same chart,
although the delay jitter values are in different scales. We
present the results from Node 4 on the left Y-axis and the results
from Node 1 on the right Y-axis. All the results are represented
in seconds. We extract the following observations:

 Fast receivers enjoy minimum values of delay jitter; the
highest observed delay jitter value throughout the simulation
time is 2 msecs. We regard this as a good performance metric
for the RTPUP protocol as the simulation scenario was set up in
such way to challenge the protocol’s performance.

 Slow receivers present delay jitter values between 10 and
15 msec and in general one-way jitter up to 150 msec is
considered to be acceptable even for VoIP applications.

0

0.005

0.01

0.015

0.02

0.025

0.03

jit
te

r d
el

ay
 (s

ec
)

0
0.00002
0.00004
0.00006
0.00008
0.0001
0.00012
0.00014
0.00016
0.00018
0.0002

Node 4 Node 1

Figure 8. Delay jitter measurements

5.4 Packet Loss Rate Measurement
For the packet loss rate measurement we have also defined a new
procedure in the TCL Session/RTPUP class. In this way we can
get directly this metric from our simulation script. We measure
the loss rate as the ratio of packets lost over the packets received
during the sample interval. This sample interval is the time
elapsed between two consequent Receiver Reports, (RR).

_ / *100ploss rate plost prcv (10)

We can observe from the simulation results (figure 9) that lost
events occur mainly when the network is heavily congested and
this happens only for a very short period. We present only the
packet loss ratio from a “slow” receiver (Node 4) as we have not
observed any packet losses from fast receivers. This is a desired
attribute of our RTPUP implementation as we have a multicast
protocol that is able to transmit at high bit rates in a congested
network, with low delay jitter and minimal packet losses. In the
next simulation we will see how our implementation outperforms
the TFRC implementation in ns2.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2 17 32 47 62 77 92 10
7

12
2

13
7

15
2

16
7

18
2

19
7

simulation time (sec)

pa
ck

et
 lo

ss
 ra

tio
 (%

)

Node 4

Figure 9. Loss rate measurements

5.5 Second Simulation: Comparison with the
TFRC Implementation in ns2
In the last simulation we compare the TFRC implementation in
ns2 against our RTP/RTCP with the TCP friendly enhancements.
The TFRC code in ns2 has been used for simulation by a number
of researchers and provides an acceptable implementation of the
TFRC specification.
The simulation scenario has exact the same network attributes
with our previous simulation in order to achieve a fair
comparison. In this case, RTP traffic is transmitted to the same
set of receivers and the congestion control is left to TFRC
protocol. We transmit also the same TCP traffic across the
network from Node 7 to Node 8. Figure 10 depicts the simulation
results.

0
100
200
300
400
500
600
700
800

3

18
.3

33
.6

48
.9

64
.2

79
.5

94
.8

11
0

12
5

14
1

15
6

17
1

18
7

simulation time (sec)

re
ce

iv
in

g
ra

te
 (K

b/
s)

Node 4 Node 1 TCP Sink

Figure 10. TFRC in ns2 versus TCP traffic

 We observe from the above results that the ns2 TFRC
implementation has “smoother” oscillations than our
implementation, which is a desired attribute especially for video
transmission. The TCP friendly behavior is also stable except for
some cases, in which TCP traffic is reduced to zero. In our
implementation the TCP traffic has always equal or higher values
when compared to the initial transmission rate.

 A second observation is that although Node 1 (“fast
receiver”) enjoys high receiving rates, Node 4 (“slow receiver”)
has very low receiving rates. However, it has to be mentioned
that the TFRC code in ns2 is used for unicast transmission. Thus,
the sender transmits different unicast streams to each one of the
receivers and adjusts its transmission rate accordingly.

 Our final conclusion is that our RTP/RTCP implementation
introduces very good characteristics when we have multicast
video stream that is transmitted via a congested path. The code
and the implementation complexity of our implementation are
very low when compared to the TFRC module in ns2.

6. CONCLUSIONS/FUTURE WORK
We present in this work an extension of the RTP code in ns2.
Our motivation was to enrich the functionality of the existing
code by including all the RTP/RTCP protocol’s specification in

RFC 3550, which are related to QoS metrics. We also extended
our code to enhance it with TFRC mechanisms for research and
experimental use. Our effort was to keep the functions and the
data fields of the original ns2 code, to modify existing functions
and to define only the necessary functions for the implementation
of the new algorithms. We tried also to keep the “code style” of
the ns2, document our code and offer it as a package for easier
integration into ns2 libraries. There were several simulation runs
and tests along with those that are presented in this work in order
to verify that we get the correct QoS measurements. Simulation
results show that the RTPUP performance has certain advantages
for multicast transmission of delay sensitive data, such as VoIP
and video streaming. In our future work we will extend the
RTUP code to support simultaneous RTPUP multicast streams in
one node for experimental use. Finally, simulation examples,
sources and documentation are available in the following URL:
http://ru6.cti.gr/ru6/ns_rtp_home.php

7. ACKNOWLEDGEMENT
We thank the anonymous SIMUTools 2008 reviewers for their
helpful comments.

8. REFERENCES
[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “A

Transport Protocol for Real-Time Applications” RFC 3550,
July 2003

[2] http://www.isi.edu/nsnam/ns/

[3] Handley, M.; Floyd, S.; Padhye, J.; Widmer, J. “TCP
Friendly Rate Control (TFRC): Protocol Specification”
Request for Comments (RFC) 3448, The Internet Society,
January 2003

[4] J. Pandhye, J. Kurose, D. Towsley, R. Koodli, "A model
based TCP-friendly rate control protocol", Proc.
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Basking
Ridge, NJ, June 1999.

[5] D. Sisalem, A. Wolisz, "MLDA: A TCP-friendly congestion
control framework for heterogeneous multicast
environments", in Eighth International Workshop on Quality
of Service (IWQoS 2000), Pittsburgh, PA, June 2000.

[6] L. Vicisiano, L. Rizzo, J. Crowcroft, "TCP - like congestion
control for layered multicast data transfer", in IEEE
INFOCOM, March 1998, pp. 996 - 1003.

[7] C. Bouras, A. Gkamas, G. Kioumourtzis, "A Framework for
Cross Layer Adaptation for Multimedia Transmission over
Wired and Wireless Networks”, The 2007 International
Conference on Internet Computing (ICOMP’07), Las Vegas,
Nevada, USA, 25 - 28 June 2007.

